Ultra-thin stack of n-type hydrogenated microcrystalline silicon and silicon oxide front contact layer for rear-emitter silicon heterojunction solar cells

被引:19
|
作者
Duy Phong Pham [1 ]
Kim, Sangho [2 ]
Kim, Sehyeon [1 ]
Lee, Sunhwa [1 ]
Anh Huy Tuan Le [3 ,4 ]
Park, Jinjoo [1 ]
Yi, Junsin [1 ]
机构
[1] Sungkyunkwan Univ, Coll Informat & Commun Engn, Seobu Ro 2066, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Seobu Ro 2066, Suwon 16419, Gyeonggi Do, South Korea
[3] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Phys, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
关键词
Rear-emitter silicon heterojunction solar cells; Hydrogenated microcrystalline silicon oxide films; Front contact layers; CHEMICAL-VAPOR-DEPOSITION; PHASE-DIAGRAMS; EFFICIENCY; IMPROVEMENT; INTERFACE; FILMS; SI;
D O I
10.1016/j.mssp.2019.02.017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the clear advantage of a n-type hydrogenated microcrystalline silicon (n-mu c-Si:H) seed layer on the optoelectronic properties and crystallisation behaviour of n-type hydrogenated microcrystalline silicon oxide (n-mu c-SiOx:H) front contact layers. The presence of a non-oxidic n-mu c-Si:H seed layer can reduce the thickness and refractive index of the n-mu c-SiOx:H front layer significantly while maintaining a high degree of crystallisation and excellent conductivity. This leads to increase in short-circuit current density (J(sc)) by 2.64% and open-circuit voltage (V-oc) by 0.56% in comparison to that of a device without the seed layer. The enhancement in Jsc can be attributed to the reduction in parasitic absorption loss in the extremely thin front layer. In addition, the improvement in V-oc can result from enhanced surface passivation of the wafer due to seed layer growth in very high hydrogen plasma environment which can play a role as the hydrogen post-plasma treatment. The low thickness of the n-mu c-SiOx:H front layer yields lower internal recombination losses. In conjunction with an optimised n-mu c-Si:H seed layer and n-mu c-SiOx:H front layer, we obtained a high conversion efficiency value of 21.8% with V-oc of 727 mV, J(sc) of 39 mA/cm(2), and FF of 77% among the fabricated cells in laboratory.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [41] Contact resistivity of n-type amorphous silicon electron contacts in silicon heterojunction solar cells
    Weigand, William
    Leilaeioun, Ashling
    Tien Ngo
    Mercado, Stefen
    Holman, Zachary C.
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 3905 - 3907
  • [42] Controlling a crystalline seed layer for mirocrystalline silicon oxide window layer in rear emitter silicon heterojunction cells
    Duy Phong Pham
    Kim, Sangho
    Lee, Sunhwa
    Anh Huy Tuan Le
    Cho, Eun-Chel
    Park, Jinjoo
    Yi, Junsin
    INFRARED PHYSICS & TECHNOLOGY, 2019, 102
  • [43] Beyond 25% efficient crystalline silicon heterojunction solar cells with hydrogenated amorphous silicon oxide stacked passivation layers for rear emitter
    Wen, Lilan
    Zhao, Lei
    Wang, Guanghong
    Jia, Xiaojie
    Xu, Xiaohua
    Qu, Shiyu
    Li, Xiaotong
    Zhang, Xianyang
    Xin, Ke
    Xiao, Jihong
    Wang, Wenjing
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 258
  • [44] Ultra-thin silicon oxide tunnel layer passivated contacts for screen-printed n-type industry solar cells
    Zhou, Ying
    Zhao, Dongming
    Yu, Xiangrui
    Li, Menglei
    Zhao, Zhiguo
    Chen, Chuanke
    Lin, Zizhen
    Wang, Lichuang
    Chen, Xiongfei
    Li, Xiaolei
    Huang, Haiwei
    Li, Rui
    Hao, Zhidan
    Liu, Yun
    Niu, Jingkai
    Xue, Yao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 266
  • [45] Optimized amorphous silicon oxide buffer layers for silicon heterojunction solar cells with microcrystalline silicon oxide contact layers
    Ding, Kaining
    Aeberhard, Urs
    Finger, Friedhelm
    Rau, Uwe
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (13)
  • [46] In Situ Process to Form Passivated Tunneling Oxides for Front-Surface Field in Rear-Emitter Silicon Heterojunction Solar Cells
    Lee, Sunhwa
    Thanh Thuy Trinh
    Pham, Duy Phong
    Kim, Sangho
    Kim, Youngkuk
    Park, Jinjoo
    Nguyen Dang Nam
    Vinh-Ai Dao
    Yi, Junsin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24): : 19332 - 19337
  • [47] Wide gap microcrystalline silicon carbide emitter for amorphous silicon oxide passivated heterojunction solar cells
    Pomaska, Manuel
    Richter, Alexei
    Lentz, Florian
    Niermann, Tore
    Finger, Friedhelm
    Rau, Uwe
    Ding, Kaining
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (02) : 1 - 6
  • [48] Optimization of p-Type Hydrogenated Microcrystalline Silicon Oxide Window Layer for High-Efficiency Crystalline Silicon Heterojunction Solar Cells
    Sritharathikhun, Jaran
    Jiang, Fangdan
    Miyajima, Shinsuke
    Yamada, Akira
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (10) : 1016031 - 1016035
  • [49] Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells
    Zhang, Yu
    Cong, Ridong
    Zhao, Wei
    Li, Yun
    Jin, Conghui
    Yu, Wei
    Fu, Guangsheng
    SCIENCE BULLETIN, 2016, 61 (10) : 787 - 793
  • [50] N-type diamane: An effective emitter layer in crystalline silicon heterojunction solar cell
    Naima
    Tyagi, Pawan K.
    Singh, Vinod
    Carbon Trends, 2022, 9