Ultra-thin stack of n-type hydrogenated microcrystalline silicon and silicon oxide front contact layer for rear-emitter silicon heterojunction solar cells

被引:19
|
作者
Duy Phong Pham [1 ]
Kim, Sangho [2 ]
Kim, Sehyeon [1 ]
Lee, Sunhwa [1 ]
Anh Huy Tuan Le [3 ,4 ]
Park, Jinjoo [1 ]
Yi, Junsin [1 ]
机构
[1] Sungkyunkwan Univ, Coll Informat & Commun Engn, Seobu Ro 2066, Suwon 16419, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Seobu Ro 2066, Suwon 16419, Gyeonggi Do, South Korea
[3] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Phys, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
关键词
Rear-emitter silicon heterojunction solar cells; Hydrogenated microcrystalline silicon oxide films; Front contact layers; CHEMICAL-VAPOR-DEPOSITION; PHASE-DIAGRAMS; EFFICIENCY; IMPROVEMENT; INTERFACE; FILMS; SI;
D O I
10.1016/j.mssp.2019.02.017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the clear advantage of a n-type hydrogenated microcrystalline silicon (n-mu c-Si:H) seed layer on the optoelectronic properties and crystallisation behaviour of n-type hydrogenated microcrystalline silicon oxide (n-mu c-SiOx:H) front contact layers. The presence of a non-oxidic n-mu c-Si:H seed layer can reduce the thickness and refractive index of the n-mu c-SiOx:H front layer significantly while maintaining a high degree of crystallisation and excellent conductivity. This leads to increase in short-circuit current density (J(sc)) by 2.64% and open-circuit voltage (V-oc) by 0.56% in comparison to that of a device without the seed layer. The enhancement in Jsc can be attributed to the reduction in parasitic absorption loss in the extremely thin front layer. In addition, the improvement in V-oc can result from enhanced surface passivation of the wafer due to seed layer growth in very high hydrogen plasma environment which can play a role as the hydrogen post-plasma treatment. The low thickness of the n-mu c-SiOx:H front layer yields lower internal recombination losses. In conjunction with an optimised n-mu c-Si:H seed layer and n-mu c-SiOx:H front layer, we obtained a high conversion efficiency value of 21.8% with V-oc of 727 mV, J(sc) of 39 mA/cm(2), and FF of 77% among the fabricated cells in laboratory.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] The investigation on the front surface field of aluminum rear emitter N-type silicon solar cells
    Xi, Xi
    Chen, Xiaojing
    Zhang, Song
    Li, Wenjia
    Shi, Zhengrong
    Li, Guohua
    SOLAR ENERGY, 2015, 114 : 198 - 205
  • [22] Bifacial n-type silicon solar cells with selective front surface field and rear emitter
    Yin, H. P.
    Tang, K.
    Zhang, J. B.
    Shan, W.
    Huang, X. M.
    Shen, X. D.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 208
  • [23] Silicon heterojunction solar cells with microcrystalline emitter
    Summonte, C
    Rizzoli, R
    Iencinella, D
    Centurioni, E
    Desalvo, A
    Zignani, F
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 : 706 - 709
  • [24] Computer modeling of the front surface field layer on the performance of the rear-emitter silicon heterojunction solar cell with 25 % efficiency
    Park, Hyeongsik
    Khokhar, Muhammad Quddamah
    Cho, Eun-Chel
    Ju, Minkyu
    Kim, Youngkuk
    Kim, Sangho
    Yi, Junsin
    OPTIK, 2020, 205
  • [25] Optimization of Amorphous Silicon Oxide Buffer Layer for High-Efficiency p-Type Hydrogenated Microcrystalline Silion Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells
    Sritharathikhun, Jaran
    Yamamoto, Hiroshi
    Miyajima, Shinsuke
    Yamada, Akira
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (11) : 8452 - 8455
  • [26] High Phosphorus-doped Seed Layer in Microcrystalline Silicon Oxide Front Contact Layers for Silicon Heterojunction Solar Cells
    Peng, Chen-Wei
    Lei, Chao
    Ruan, Tianyu
    Zhong, Jun
    Yang, Miao
    Long, Wei
    Yu, Cao
    Li, Yuanmin
    Xu, Xixiang
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 2550 - 2553
  • [27] INTERDIGITATED REAR CONTACT SOLAR CELLS WITH AMORPHOUS SILICON HETEROJUNCTION EMITTER
    O'Sullivan, B. J.
    Bearda, T.
    Qiu, Y.
    Robbelein, J.
    Gong, C.
    Posthuma, N. E.
    Gordon, I.
    Poortmans, J.
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010, : 3549 - 3552
  • [28] Planar rear emitter back contact silicon heterojunction solar cells
    Stangl, R.
    Haschke, J.
    Bivour, M.
    Korte, L.
    Schmidt, M.
    Lips, K.
    Rech, B.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (10) : 1900 - 1903
  • [29] Application of rear-emitter silicon heterojunction solar cells with mitigation of the damage on the amorphous silicon by an atomic-layered ZnO
    Park, Hyeongsik
    Kim, Youngkuk
    Song, Jae Chun
    Lee, Jaehyeong
    Pham, Duy Phong
    Lee, Sunhwa
    Kim, Joondong
    Huh, Yunsung
    Yi, Junsin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (03) : 3912 - 3919
  • [30] Progress on large area n-type silicon solar cells with front laser doping and a rear emitter
    Uruena, Angel
    Aleman, Monica
    Cornagliotti, Emanuele
    Sharma, Aashish
    Haslinger, Michael
    Tous, Loic
    Russell, Richard
    John, Joachim
    Duerinckx, Filip
    Szlufcik, Jozef
    PROGRESS IN PHOTOVOLTAICS, 2016, 24 (08): : 1149 - 1156