Frames, their relatives and reproducing kernel Hilbert spaces

被引:2
|
作者
Speckbacher, Michael [1 ]
Balazs, Peter [2 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, UMR 5251, 351 Cours Liberat, F-33405 Talence, France
[2] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
continuous frames; reproducing pairs; reproducing kernel Hilbert spaces; redundancy; atomic measures; PAIRS;
D O I
10.1088/1751-8121/ab573c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper considers different facets of the interplay between reproducing kernel Hilbert spaces (RKHS) and stable analysis/synthesis processes: first, we analyze the structure of the reproducing kernel of a RKHS using frames and reproducing pairs. Second, we present a new approach to prove the result that finite redundancy of a continuous frame implies atomic structure of the underlying measure space. Our proof uses the RKHS structure of the range of the analysis operator. This in turn implies that all the attempts to extend the notion of Riesz basis to general measure spaces are fruitless since every such family can be identified with a discrete Riesz basis. Finally, we show how the range of the analysis operators of a reproducing pair can be equipped with a RKHS structure.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A note on multiplier algebras on reproducing kernel Hilbert spaces
    Trent, Tavan T.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) : 2835 - 2838
  • [42] THE EXPLICIT FORMULAS FOR REPRODUCING KERNEL OF SOME HILBERT SPACES
    Moradi, E.
    Babolian, E.
    Javadi, S.
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 1041 - 1053
  • [43] Uniform distribution, discrepancy, and reproducing kernel Hilbert spaces
    Amstler, C
    Zinterhof, P
    [J]. JOURNAL OF COMPLEXITY, 2001, 17 (03) : 497 - 515
  • [44] REPRODUCING KERNEL HILBERT SPACES IN THE MEAN FIELD LIMIT
    Fiedler, Christian
    Herty, Michael
    Rom, Michael
    Segala, Chiara
    Trimpe, Sebastian
    [J]. KINETIC AND RELATED MODELS, 2023, 16 (06) : 850 - 870
  • [45] Optimal sampling points in reproducing kernel Hilbert spaces
    Wang, Rui
    Zhang, Haizhang
    [J]. JOURNAL OF COMPLEXITY, 2016, 34 : 129 - 151
  • [46] POSITIVE DEFINITENESS, REPRODUCING KERNEL HILBERT SPACES AND BEYOND
    Ferreira, J. C.
    Menegatto, V. A.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (01) : 64 - 88
  • [47] A refinement of the stability test for reproducing kernel Hilbert spaces
    Bisiacco, Mauro
    Pillonetto, Gianluigi
    [J]. AUTOMATICA, 2024, 163
  • [48] Density of sampling and interpolation in reproducing kernel Hilbert spaces
    Fuehr, Hartmut
    Groechenig, Karlheinz
    Haimi, Antti
    Klotz, Andreas
    Romero, Jose Luis
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 663 - 686
  • [49] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Emmanuel Fricain
    Javad Mashreghi
    Daniel Seco
    [J]. Computational Methods and Function Theory, 2014, 14 : 665 - 680
  • [50] VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES AND UNIVERSALITY
    Carmeli, C.
    De Vito, E.
    Toigo, A.
    Umanita, V.
    [J]. ANALYSIS AND APPLICATIONS, 2010, 8 (01) : 19 - 61