Study on relativistic Cherenkov source with metallic photonic band-gap structure

被引:0
|
作者
Gao, Xi [1 ]
Yang, Ziqiang [1 ]
Qi, Limei [1 ]
Lan, Feng [1 ]
Shi, Zongjun [1 ]
Liu, Yu [1 ]
Liang, Zheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst High Energy Elect, Chengdu 610054, Peoples R China
关键词
relativistic Cherenkov source; photonic band gap; particle-in-cell simulation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Ka-band slow-wave structure consists of a two-dimensional metallic photonic band-gap and a slow-wave plate as its periodic unit. The photonic band-gap (PBG) structure, whose front view is shown in Fig. 1, has a defect in the central of the triangular lattices. In metallic band gap, the first band gap begins from the zero frequency, which makes the TM01-like mode always appear in defect, so the appropriate parameters can be designed to suppress all the higher-order TM0n-like (n >= 2) modes [1,2]. The parameters of photonic band-gap and the slow-wave structure are shown in Table I.
引用
收藏
页码:158 / 159
页数:2
相关论文
共 50 条
  • [31] Simulation of the spatial pattern and band-gap structure of holographic photonic crystals
    Pen E.F.
    Shatalov I.G.
    Optical Memory and Neural Networks, 2009, 18 (1) : 29 - 33
  • [32] THE BAND-GAP AND TRUE BAND-GAP IN NOMINALLY METALLIC CARBON NANOTUBES: THE TIGHT-BINDING STUDY ON CORRUGATION EFFECT
    Lu, Hongxia
    Wu, Jianbao
    Wang, Jizhen
    Shi, Shaocong
    Zhang, Weiyi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (08):
  • [33] Active metallic photonic band-gap materials (MPBG): Experimental results on beam shaper
    Poilasne, G
    Pouliguen, P
    Mahdjoubi, K
    Desclos, L
    Terret, C
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (01) : 117 - 119
  • [34] Radiation characteristics of a half wavelength dipole inside metallic photonic band-gap structures
    Poilasne, G
    Pouliguen, P
    Mahdjoubi, K
    Terret, C
    Gelin, P
    Desclos, L
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 170 - 173
  • [35] Laser-machined layer-by-layer metallic photonic band-gap structures
    Katsarakis, N
    Chatzitheodoridis, E
    Kiriakidis, G
    Sigalas, MM
    Soukoulis, CM
    Leung, WY
    Tuttle, G
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3263 - 3265
  • [36] Photonic band-gap inhibition of modulational instabilities
    Gomila, D
    Zambrini, R
    Oppo, GL
    PHYSICAL REVIEW LETTERS, 2004, 92 (25) : 253904 - 1
  • [37] Band-Gap Photonic Structures in Dichromate Pullulan
    Savic-Sevic, Svetlana
    Pantelic, Dejan
    Nikolic, Marko
    Jelenkovic, Branislav
    MATERIALS AND MANUFACTURING PROCESSES, 2009, 24 (10-11) : 1127 - 1129
  • [38] BAND-GAP REFERENCE VOLTAGE SOURCE
    BABAIE, H
    ZIMMERMAN, DE
    PROCEEDINGS : THE TWENTY-FIRST SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1989, : 541 - 544
  • [39] A photonic band-gap planar hollow waveguide
    Fedotov, AB
    Konorov, SO
    Naumov, AN
    Haus, JW
    Miles, RB
    Sidorov-Biryukov, DA
    Chigarev, NV
    Zheltikov, AM
    ICONO 2001: FUNDAMENTAL ASPECTS OF LASER-MATTER INTERACTION AND PHYSICS OF NANOSTRUCTURES, 2002, 4748 : 331 - 339
  • [40] Highly dispersive photonic band-gap prism
    Lin, SY
    Hietala, VM
    Wang, L
    Jones, ED
    OPTICS LETTERS, 1996, 21 (21) : 1771 - 1773