Study on relativistic Cherenkov source with metallic photonic band-gap structure

被引:0
|
作者
Gao, Xi [1 ]
Yang, Ziqiang [1 ]
Qi, Limei [1 ]
Lan, Feng [1 ]
Shi, Zongjun [1 ]
Liu, Yu [1 ]
Liang, Zheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst High Energy Elect, Chengdu 610054, Peoples R China
关键词
relativistic Cherenkov source; photonic band gap; particle-in-cell simulation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Ka-band slow-wave structure consists of a two-dimensional metallic photonic band-gap and a slow-wave plate as its periodic unit. The photonic band-gap (PBG) structure, whose front view is shown in Fig. 1, has a defect in the central of the triangular lattices. In metallic band gap, the first band gap begins from the zero frequency, which makes the TM01-like mode always appear in defect, so the appropriate parameters can be designed to suppress all the higher-order TM0n-like (n >= 2) modes [1,2]. The parameters of photonic band-gap and the slow-wave structure are shown in Table I.
引用
收藏
页码:158 / 159
页数:2
相关论文
共 50 条
  • [21] Two-dimensional metallic photonic band-gap crystals fabricated by LIGA
    N. Katsarakis
    M. Bender
    L. Singleton
    G. Kiriakidis
    C. M. Soukoulis
    Microsystem Technologies, 2002, 8 (2) : 74 - 77
  • [22] Analytical method to compute metallic photonic band-gap radar cross section
    Collardey, S
    Pouliguen, P
    Mahdjoubi, K
    Desclos, L
    Tarot, AC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2002, 35 (02) : 145 - 150
  • [23] Two-dimensional metallic photonic band-gap crystals fabricated by LIGA
    Katsarakis, N
    Bender, M
    Singleton, L
    Kiriakidis, G
    Soukoulis, CM
    MICROSYSTEM TECHNOLOGIES, 2002, 8 (2-3) : 74 - 77
  • [24] Active metallic photonic band-gap materials used for polarization diversity.
    Poilasne, G
    Desclos, L
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-4: TRANSMITTING WAVES OF PROGRESS TO THE NEXT MILLENNIUM, 2000, : 964 - 967
  • [25] X-band photonic band-gap accelerator structure breakdown experiment
    Marsh, Roark A.
    Shapiro, Michael A.
    Temkin, Richard J.
    Dolgashev, Valery A.
    Laurent, Lisa L.
    Lewandowski, James R.
    Yeremian, A. Dian
    Tantawi, Sami G.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (02):
  • [26] Fabrication of photonic band-gap crystals
    Cheng, CC
    Scherer, A
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06): : 2696 - 2700
  • [27] Photonic band-gap engineering of quasiperiodic photonic crystals
    Wang, YQ
    Jian, SS
    Han, SZ
    Feng, S
    Feng, ZF
    Cheng, BY
    Zhang, DZ
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (10)
  • [28] Photonic band-gap engineering of quasiperiodic photonic crystals
    Wang, Yiquan
    Jian, Shuisheng
    Han, Shouzhen
    Feng, Shuai
    Feng, Zhifang
    Cheng, Bingying
    Zhang, Daozhong
    Journal of Applied Physics, 2005, 97 (10):
  • [29] Theoretical study of dipole antennas on photonic band-gap materials
    Sigalas, MM
    Biswas, R
    Ho, KM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 13 (04) : 205 - 209
  • [30] Band-gap structure of photonic crystal with metasurface-teflon layers
    Sedykh, E. A.
    Denisultanov, A. K.
    Khodzitsky, M. K.
    1ST INTERNATIONAL SCHOOL AND CONFERENCE SAINT-PETERSBURG OPEN 2014 ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES, 2014, 541