Sobolev-Dirichlet problem for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces

被引:9
|
作者
Benyaiche, Allami [1 ]
Khlifi, Ismail [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, BP 133, Kenitra, Morocco
关键词
Generalized Phi-functions; Generalized Orlicz-Sobolev spaces; Obstacle problem; Sobolev-Dirichlet problem; Harnack inequality; Holder continuity; SETS; OBSTACLE;
D O I
10.1007/s11117-020-00789-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove existence, uniqueness, and local regularity of the solution to the Sobolev-Dirichlet problem for quasilinear elliptic equations in the generalized Orlicz-Sobolev spaces on domains, not necessarily bounded, of R-N. Our approach is based on solving the obstacle problem and using the Harnack inequality.
引用
收藏
页码:819 / 841
页数:23
相关论文
共 50 条
  • [31] Positive solutions of quasilinear elliptic equations with critical orlicz-sobolev nonlinearity on RN
    Fukagai, Nobuyoshi
    Ito, Masayuki
    Narukawa, Kimiaki
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2006, 49 (02): : 235 - 267
  • [32] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [33] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fei Fang
    Zhong Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 287 - 296
  • [34] Existence of Three Solutions for Quasilinear Elliptic Equations: an Orlicz-Sobolev Space Setting
    Fei FANG
    Zhong TAN
    Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 287 - 296
  • [35] Quasilinear elliptic equations in RN via variational methods and Orlicz-Sobolev embeddings
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) : 197 - 213
  • [36] Existence of three solutions for quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 287 - 296
  • [37] ON A CLASS OF NONHOMOGENOUS QUASILINEAR PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Souayah, Asma Karoui
    OPUSCULA MATHEMATICA, 2012, 32 (04) : 731 - 750
  • [38] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Gossez, JP
    Manásevich, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 : 891 - 909
  • [39] Existence of ground state solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    BOUNDARY VALUE PROBLEMS, 2017,
  • [40] A class of elliptic inclusion in fractional Orlicz-Sobolev spaces
    El-houari, Hamza
    Moussa, Hicham
    Chadli, Lalla Saadia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 755 - 772