Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation

被引:15
|
作者
Jang, Segeun [1 ]
Kang, Yun Sik [2 ,8 ]
Choi, Jiwoo [3 ,4 ]
Yeon, Je Hyeon [3 ,4 ]
Seol, Changwook [5 ]
Le Vu Nam [5 ]
Choi, Mansoo [3 ,4 ]
Kim, Sang Moon [4 ,5 ]
Yoo, Sung Jong [2 ,4 ,6 ,7 ]
机构
[1] Hanbat Natl Univ, Dept Mech Engn, Daejeon 34158, South Korea
[2] Korea Inst Sci & Technol KIST, Ctr Hydrogen Fuel Cell Res, Seoul 02792, South Korea
[3] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[4] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 08826, South Korea
[5] Incheon Natl Univ, Dept Mech Engn, Incheon 22012, South Korea
[6] Kyung Hee Univ, KHU KIST Dept Converging Sci & Technol, 26 Kyungheedae Ro, Seoul 02447, South Korea
[7] Univ Sci & Technol UST, KIST Sch, Div Energy & Environm Technol, Daejeon 34113, South Korea
[8] Hyundai Mobis Co Ltd, Fuel Cell Core Parts Dev Cell, Uiwang 16082, South Korea
基金
新加坡国家研究基金会;
关键词
Low humidity; TiO2; Membrane; Pattern; Thermal imprinting; Fuel cells; PERFORMANCE; NANOPARTICLES;
D O I
10.1016/j.jiec.2020.07.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and facile way of modifying commercial membranes for effective fuel cell operation under elevated temperature/low relative humidity conditions has been developed. Instead of using the conventional casting and evaporation method involving the mixed Nafion (R) ionomer and inorganic fillers, a TiO2/Nafion (R) composite membrane was fabricated by transferring uniformly constructed porous TiO2 layers from a Si wafer to the Nafion (R) membrane via spin-coating, followed by a thermal imprinting process. From the process, filler agglomeration was prevented during the solvent evaporation, which secured water retention effect of the hygroscopic TiO2 layers. Furthermore, the prepared TiO2/Nafion (R) composite membrane was subjected to an additional prism patterning process to provide more proton pathways by enlarging the interfacial surface area between the composite membrane and the catalyst layer, and offset the reduced proton conductivity due to insertion of the inorganic fillers. The modified membrane exhibited highly improved performance compared to the pristine Nafion (R) 211 membrane under elevated temperature/low humidity conditions. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 50 条
  • [41] Composite membrane-based PEMFCs for operating at elevated temperature and reduced relative humidity.
    Lvov, SN
    Chalkova, E
    Fedkin, MV
    Pague, MB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U662 - U662
  • [42] Asymmetric electrode ionomer for low relative humidity operation of anion exchange membrane fuel cells
    Leonard, Daniel P.
    Maurya, Sandip
    Park, Eun Joo
    Manriquez, Luis Delfin
    Noh, Sangtaik
    Wang, Xiaofeng
    Bae, Chulsung
    Baca, Ehren D.
    Fujimoto, Cy
    Kim, Yu Seung
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (28) : 14135 - 14144
  • [43] Solid Polymer Electrolyte Water Electrolyser Based on Nafion-TiO2 Composite Membrane for High Temperature Operation
    Baglio, V.
    Ornelas, R.
    Matteucci, F.
    Martina, F.
    Ciccarella, G.
    Zama, I.
    Arriaga, L. G.
    Antonucci, V.
    Arico, A. S.
    FUEL CELLS, 2009, 9 (03) : 247 - 252
  • [44] Synthesis and Ex-situ Characterization of Nafion/TiO2 Composite Membranes for Direct Ethanol Fuel Cell
    Barbora, Lepakshi
    Acharya, Simadri
    Verma, Anil
    MACROMOLECULAR SYMPOSIA, 2009, 277 : 177 - 189
  • [45] Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells
    Wang Zhengbang
    Tang Haolin
    Pan Mu
    JOURNAL OF MEMBRANE SCIENCE, 2011, 369 (1-2) : 250 - 257
  • [46] Nafion-1,2,3-triazole composite membrane for fuel cell
    Kim, Je-Deok
    Jun, Mun-Suk
    Rhee, Hee-Woo
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 271 - 282
  • [47] Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition
    Oh, Kwangjin
    Kwon, Osung
    Son, Byungrak
    Ha Lee, Dong
    Shanmugam, Sangaraju
    JOURNAL OF MEMBRANE SCIENCE, 2019, 583 : 103 - 109
  • [48] Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell
    Xu, Guoxiao
    Wu, Zhiguang
    Wei, Zenglv
    Zhang, Wenjie
    Wu, Junli
    Li, Ying
    Li, Jing
    Qu, Konggang
    Cai, Weiwei
    RENEWABLE ENERGY, 2020, 153 : 935 - 939
  • [49] Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell
    Yang, H. N.
    Lee, W. H.
    Choi, B. S.
    Kim, W. J.
    JOURNAL OF MEMBRANE SCIENCE, 2016, 504 : 20 - 28
  • [50] 30 μm Thin Anode Gas Diffusion Layers for Optimized PEM Fuel Cell Operation at 120 °C and Low Relative Humidity
    Yildirim, Koray
    Fadlullah, Hassan
    Schwarz, Claudia
    Lombeck, Florian
    Klose, Carolin
    Vierrath, Severin
    Breitwieser, Matthias
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (02):