Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation

被引:15
|
作者
Jang, Segeun [1 ]
Kang, Yun Sik [2 ,8 ]
Choi, Jiwoo [3 ,4 ]
Yeon, Je Hyeon [3 ,4 ]
Seol, Changwook [5 ]
Le Vu Nam [5 ]
Choi, Mansoo [3 ,4 ]
Kim, Sang Moon [4 ,5 ]
Yoo, Sung Jong [2 ,4 ,6 ,7 ]
机构
[1] Hanbat Natl Univ, Dept Mech Engn, Daejeon 34158, South Korea
[2] Korea Inst Sci & Technol KIST, Ctr Hydrogen Fuel Cell Res, Seoul 02792, South Korea
[3] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 08826, South Korea
[4] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 08826, South Korea
[5] Incheon Natl Univ, Dept Mech Engn, Incheon 22012, South Korea
[6] Kyung Hee Univ, KHU KIST Dept Converging Sci & Technol, 26 Kyungheedae Ro, Seoul 02447, South Korea
[7] Univ Sci & Technol UST, KIST Sch, Div Energy & Environm Technol, Daejeon 34113, South Korea
[8] Hyundai Mobis Co Ltd, Fuel Cell Core Parts Dev Cell, Uiwang 16082, South Korea
基金
新加坡国家研究基金会;
关键词
Low humidity; TiO2; Membrane; Pattern; Thermal imprinting; Fuel cells; PERFORMANCE; NANOPARTICLES;
D O I
10.1016/j.jiec.2020.07.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and facile way of modifying commercial membranes for effective fuel cell operation under elevated temperature/low relative humidity conditions has been developed. Instead of using the conventional casting and evaporation method involving the mixed Nafion (R) ionomer and inorganic fillers, a TiO2/Nafion (R) composite membrane was fabricated by transferring uniformly constructed porous TiO2 layers from a Si wafer to the Nafion (R) membrane via spin-coating, followed by a thermal imprinting process. From the process, filler agglomeration was prevented during the solvent evaporation, which secured water retention effect of the hygroscopic TiO2 layers. Furthermore, the prepared TiO2/Nafion (R) composite membrane was subjected to an additional prism patterning process to provide more proton pathways by enlarging the interfacial surface area between the composite membrane and the catalyst layer, and offset the reduced proton conductivity due to insertion of the inorganic fillers. The modified membrane exhibited highly improved performance compared to the pristine Nafion (R) 211 membrane under elevated temperature/low humidity conditions. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:327 / 332
页数:6
相关论文
共 50 条
  • [31] Directly deposited Nafion/TiO2 composite membranes for high power medium temperature fuel cells
    Wehkamp, Niklas
    Breitwieser, Matthias
    Buechler, Andreas
    Klingele, Matthias
    Zengerle, Roland
    Thiele, Simon
    RSC ADVANCES, 2016, 6 (29): : 24261 - 24266
  • [32] Poly(phenylene sulfonic acid)-expanded polytetrafluoroethylene composite membrane for low relative humidity operation in hydrogen fuel cells
    Shang, Zhihao
    Hossain, Md Masem
    Wycisk, Ryszard
    Pintauro, Peter N.
    JOURNAL OF POWER SOURCES, 2022, 535
  • [33] Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties
    Laboratorio de Instrumentación Espacial , INTA, Crta. Ajalvir km. 4, 28850 Torrejon de Ardoz, Madrid, Spain
    不详
    不详
    Thin Solid Films, 1 (212-219):
  • [34] Composite Nafion Membranes Containing Nanosize TiO2/SnO2 for Proton Exchange Membrane Fuel Cells
    Abbaraju, Ravikanth R.
    Dasgupta, Niladri
    Virkar, Anil V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (12) : B1307 - B1313
  • [35] Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties
    Alvarez-Herrero, A
    Fort, AJ
    Guerrero, H
    Bernabeu, E
    THIN SOLID FILMS, 1999, 349 (1-2) : 212 - 219
  • [36] Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120°C and reduced relative humidity
    Xu, Hui
    Kunz, H. Russell
    Fenton, James M.
    ELECTROCHIMICA ACTA, 2007, 52 (11) : 3525 - 3533
  • [37] Nafion/silicon oxide composite membrane for high temperature proton exchange membrane fuel cell
    Yu Jun
    Pan Mu
    Yuan Runzhang
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2007, 22 (03): : 478 - 481
  • [39] Nafion/Silicon oxide composite membrane for high temperature proton exchange membrane fuel cell
    Jun Yu
    Mu Pan
    Runzhang Yuan
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2007, 22 : 478 - 481
  • [40] Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell
    Kwak, SH
    Yang, TH
    Kim, CS
    Yoon, KH
    SOLID STATE IONICS, 2003, 160 (3-4) : 309 - 315