Fast and accurate sCMOS noise correction for fluorescence microscopy

被引:94
|
作者
Mandracchia, Biagio [1 ,2 ]
Hua, Xuanwen [1 ,2 ]
Guo, Changliang [1 ,2 ]
Son, Jeonghwan [1 ,2 ]
Urner, Tara [1 ,2 ]
Jia, Shu [1 ,2 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30322 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LIGHT-FIELD; NEURONAL-ACTIVITY; LOCALIZATION; CMOS; IMPLEMENTATION; DECONVOLUTION; TRACKING; CCD;
D O I
10.1038/s41467-019-13841-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and different responsivity at each pixel induces extra readout and pattern noise compared to charge-coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals, thereby compromising strategies to reduce photo-damage to live samples. Here, we propose a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN) for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the fine details of the signal. The method improves the camera performance, enabling fast, low-light and quantitative optical microscopy with video-rate denoising for a broad range of imaging conditions and modalities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Fast and accurate sCMOS noise correction for fluorescence microscopy
    Biagio Mandracchia
    Xuanwen Hua
    Changliang Guo
    Jeonghwan Son
    Tara Urner
    Shu Jia
    Nature Communications, 11
  • [2] sCMOS Noise Correction Algorithm for Microscopy Images
    Liu, Sheng
    Mlodzianoski, Michael J.
    Hu, Zhenhua
    Ren, Yuan
    McElmurry, Kristi
    Miller, David A.
    Ziegler, Karl F.
    Ivey, Paula-Marie
    Ma, Donghan
    Suter, Daniel M.
    Huang, Fang
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 347A - 347A
  • [3] sCMOS noise-correction algorithm for microscopy images
    Liu, Sheng
    Mlodzianoski, Michael J.
    Hu, Zhenhua
    Ren, Yuan
    McElmurry, Kristi
    Suter, Daniel M.
    Huang, Fang
    NATURE METHODS, 2017, 14 (08) : 759 - 761
  • [4] sCMOS noise-correction algorithm for microscopy images
    Sheng Liu
    Michael J Mlodzianoski
    Zhenhua Hu
    Yuan Ren
    Kristi McElmurry
    Daniel M Suter
    Fang Huang
    Nature Methods, 2017, 14 : 760 - 761
  • [5] Fast and accurate automated cell boundary determination for fluorescence microscopy
    Stephen Hugo Arce
    Pei-Hsun Wu
    Yiider Tseng
    Scientific Reports, 3
  • [6] Fast and accurate automated cell boundary determination for fluorescence microscopy
    Arce, Stephen Hugo
    Wu, Pei-Hsun
    Tseng, Yiider
    SCIENTIFIC REPORTS, 2013, 3
  • [7] Adaptive Detection and Correction of Fixed Pattern Noise in sCMOS Cameras
    Bai, Hua
    Yang, Yamei
    Liu, Yan
    Zhao, Junfa
    Zhang, Cheng
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2018), 2018, : 107 - 111
  • [8] sCMOS Noise-Corrected Superresolution Reconstruction Algorithm for Structured Illumination Microscopy
    Zhou, Bo
    Huang, Xiaoshuai
    Fan, Junchao
    Chen, Liangyi
    PHOTONICS, 2022, 9 (03)
  • [9] Say goodbye to sCMOS noise
    Strack, Rita
    NATURE METHODS, 2020, 17 (03) : 252 - 252
  • [10] Say goodbye to sCMOS noise
    Rita Strack
    Nature Methods, 2020, 17 : 252 - 252