Fast and accurate sCMOS noise correction for fluorescence microscopy

被引:94
|
作者
Mandracchia, Biagio [1 ,2 ]
Hua, Xuanwen [1 ,2 ]
Guo, Changliang [1 ,2 ]
Son, Jeonghwan [1 ,2 ]
Urner, Tara [1 ,2 ]
Jia, Shu [1 ,2 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30322 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LIGHT-FIELD; NEURONAL-ACTIVITY; LOCALIZATION; CMOS; IMPLEMENTATION; DECONVOLUTION; TRACKING; CCD;
D O I
10.1038/s41467-019-13841-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid development of scientific CMOS (sCMOS) technology has greatly advanced optical microscopy for biomedical research with superior sensitivity, resolution, field-of-view, and frame rates. However, for sCMOS sensors, the parallel charge-voltage conversion and different responsivity at each pixel induces extra readout and pattern noise compared to charge-coupled devices (CCD) and electron-multiplying CCD (EM-CCD) sensors. This can produce artifacts, deteriorate imaging capability, and hinder quantification of fluorescent signals, thereby compromising strategies to reduce photo-damage to live samples. Here, we propose a content-adaptive algorithm for the automatic correction of sCMOS-related noise (ACsN) for fluorescence microscopy. ACsN combines camera physics and layered sparse filtering to significantly reduce the most relevant noise sources in a sCMOS sensor while preserving the fine details of the signal. The method improves the camera performance, enabling fast, low-light and quantitative optical microscopy with video-rate denoising for a broad range of imaging conditions and modalities.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy
    Atsushi Matsuda
    Lothar Schermelleh
    Yasuhiro Hirano
    Tokuko Haraguchi
    Yasushi Hiraoka
    Scientific Reports, 8
  • [22] Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy
    Matsuda, Atsushi
    Schermelleh, Lothar
    Hirano, Yasuhiro
    Haraguchi, Tokuko
    Hiraoka, Yasushi
    SCIENTIFIC REPORTS, 2018, 8
  • [23] Fading correction for fluorescence quantitation in confocal microscopy
    Nagelhus, TA
    Slupphaug, G
    Krokan, HE
    Lindmo, T
    CYTOMETRY, 1996, 23 (03): : 187 - 195
  • [24] ABSORPTION AND SCATTERING CORRECTION IN FLUORESCENCE CONFOCAL MICROSCOPY
    VISSER, TD
    GROEN, FCA
    BRAKENHOFF, GJ
    JOURNAL OF MICROSCOPY-OXFORD, 1991, 163 : 189 - 200
  • [25] Fast and Accurate Analysis of Supply Noise Effects in PLL With Noise Interactions
    Kuo, Chin-Cheng
    Liu, Chien-Nan Jimmy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (01) : 44 - 52
  • [26] Characterization of Performance of Back-Illuminated sCMOS Cameras for Microscopy Applications versus Conventional sCMOS and EMCCD Cameras
    Cooper, Justin
    Mullan, Alan
    Marsh, Aleksandra
    Barszczewski, Marcin
    PHOTONIC INSTRUMENTATION ENGINEERING VI, 2019, 10925
  • [27] Automatic noise quantification for confocal fluorescence microscopy images
    Paul, Perrine
    Duessmann, Heiko
    Bernas, Tytus
    Huber, Heinrich
    Kalamatianos, Dimitrios
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (06) : 426 - 434
  • [28] Publisher Correction: Speed scaling in multiphoton fluorescence microscopy
    Jianglai Wu
    Na Ji
    Kevin K. Tsia
    Nature Photonics, 2022, 16 (1) : 87 - 87
  • [29] Adaptive aberration correction in confocal scanning fluorescence microscopy
    Wang, Zhibin
    Shi, Guohua
    Zhang, Yudong
    CHINESE OPTICS LETTERS, 2014, 12
  • [30] Fast fluorescence microscopy for imaging the dynamics of embryonic development
    Vermot, Julien
    Fraser, Scott E.
    Liebling, Michael
    HFSP JOURNAL, 2008, 2 (03): : 143 - 155