TWO-SCALE CONVERGENCE FOR LOCALLY PERIODIC MICROSTRUCTURES AND HOMOGENIZATION OF PLYWOOD STRUCTURES

被引:9
|
作者
Ptashnyk, Mariya [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math 1, D-52056 Aachen, Germany
来源
MULTISCALE MODELING & SIMULATION | 2013年 / 11卷 / 01期
关键词
two-scale convergence; plywood structures; locally periodic homogenization; non-periodic microstructures; PRINCIPLES; BEHAVIOR;
D O I
10.1137/120862338
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The introduced notion of locally periodic two-scale convergence allows one to average a wider range of microstructures, compared to the periodic one. The compactness theorem for locally periodic two-scale convergence and the characterization of the limit for a sequence bounded in H-1(Omega) are proven. The underlying analysis comprises the approximation of functions, with the periodicity with respect to the fast variable being dependent on the slow variable, by locally periodic functions, periodic in subdomains smaller than the considered domain but larger than the size of microscopic structures. The developed theory is applied to derive macroscopic equations for a linear elasticity problem defined in domains with plywood structures.
引用
收藏
页码:92 / 117
页数:26
相关论文
共 50 条
  • [41] High-Order Two-Scale Asymptotic Paradigm for the Elastodynamic Homogenization of Periodic Composites
    Luo, Wei-Zhi
    He, Mu
    Xia, Liang
    He, Qi-Chang
    ACTA MECHANICA SOLIDA SINICA, 2024, 37 (01) : 124 - 138
  • [42] An introduction to the two-scale homogenization method for seismology
    Capdeville, Yann
    Cupillard, Paul
    Singh, Sneha
    MACHINE LEARNING IN GEOSCIENCES, 2020, 61 : 217 - 306
  • [43] Two-Scale Convergence of Integral Functionals with Convex, Periodic and Nonstandard Growth Integrands
    Joel Fotso Tachago
    Hubert Nnang
    Acta Applicandae Mathematicae, 2012, 121 : 175 - 196
  • [44] Sparse Two-Scale FEM for Homogenization Problems
    Matache, A. -M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 659 - 669
  • [45] Two-scale computational homogenization of calcified hydrogels
    Ayguen, Serhat
    Klinge, Sandra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (17) : 13182 - 13198
  • [46] Sparse Two-Scale FEM for Homogenization Problems
    A.-M. Matache
    Journal of Scientific Computing, 2002, 17 : 659 - 669
  • [47] A locally exact homogenization theory for periodic microstructures with isotropic phases
    Drago, Anthony S.
    Pindera, Marek-Jerzy
    Journal of Applied Mechanics, Transactions ASME, 2008, 75 (05): : 051010 - 051010
  • [48] A locally exact homogenization theory for periodic microstructures with isotropic phases
    Drago, Anthony S.
    Pindera, Marek-Jerzy
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2008, 75 (05):
  • [49] Two-Scale Convergence of Integral Functionals with Convex, Periodic and Nonstandard Growth Integrands
    Tachago, Joel Fotso
    Nnang, Hubert
    ACTA APPLICANDAE MATHEMATICAE, 2012, 121 (01) : 175 - 196
  • [50] Two-Scale Convergence in L 2
    Panov E.Y.
    Journal of Mathematical Sciences, 2015, 208 (2) : 240 - 246