Sparse Two-Scale FEM for Homogenization Problems

被引:10
|
作者
Matache, A. -M. [1 ]
机构
[1] ETH Zentrum, Seminar Appl Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Homogenization; two-scale FEM; sparse two-scale FEM;
D O I
10.1023/A:1015187000835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze two-scale Finite Element Methods for the numerical solution of elliptic homogenization problems with coefficients oscillating at a small length scale epsilon << 1. Based on a refined two-scale regularity on the solutions, two-scale tensor product FE spaces are introduced and error estimates which are robust (i.e., independent of epsilon) are given. We show that under additional two-scale regularity assumptions on the solution, resolution of the fine scale is possible with substantially fewer degrees of freedom and the two-scale full tensor product spaces can be "thinned out'' by means of sparse interpolation preserving at the same time the error estimates.
引用
收藏
页码:659 / 669
页数:11
相关论文
共 50 条
  • [1] Sparse Two-Scale FEM for Homogenization Problems
    A.-M. Matache
    [J]. Journal of Scientific Computing, 2002, 17 : 659 - 669
  • [2] Two-scale FEM for homogenization problems
    Matache, AM
    Schwab, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04): : 537 - 572
  • [3] Two scale FEM for homogenization problems
    Schwab, C
    [J]. MATHEMATICAL MODELING AND NUMERICAL SIMULATION IN CONTINUUM MECHANICS, 2002, 19 : 91 - 107
  • [4] Two-Scale Homogenization of the Nonlinear Eddy Current Problem with FEM
    Hollaus, Karl
    Hannukainen, Antti
    Schoeberl, Joachim
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 413 - 416
  • [5] Two-scale regularity for homogenization problems with nonsmooth fine scale geometry
    Matache, AM
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (07): : 1053 - 1080
  • [6] Two-scale homogenization in transmission problems of elasticity with interface jumps
    Orlik, Julia
    [J]. APPLICABLE ANALYSIS, 2012, 91 (07) : 1299 - 1319
  • [7] Two-scale homogenization in the Heisenberg group
    Franchi, B
    Tesi, MC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (06): : 495 - 532
  • [8] Two-scale convergence and homogenization on BV(Ω)
    Amar, M
    [J]. ASYMPTOTIC ANALYSIS, 1998, 16 (01) : 65 - 84
  • [9] Adaptive Two-Scale Nonlinear Homogenization
    Fan, Rong
    Yuan, Zheng
    Fish, Jacob
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2010, 11 (01): : 27 - 36
  • [10] Rate of convergence of a two-scale expansion for some "weakly" stochastic homogenization problems
    Le Bris, Claude
    Legoll, Frederic
    Thomines, Florian
    [J]. ASYMPTOTIC ANALYSIS, 2012, 80 (3-4) : 237 - 267