Two-scale regularity for homogenization problems with nonsmooth fine scale geometry

被引:2
|
作者
Matache, AM [1 ]
机构
[1] ETH, Seminar Angew Math, CH-8092 Zurich, Switzerland
[2] MPI Math Nat Wissensch, D-04103 Leipzig, Germany
来源
关键词
two-scale regularity; analytic regulaxity; countably normed spaces; two-scale finite element method;
D O I
10.1142/S0218202503002817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Elliptic problems on unbounded domains with periodic coefficients and geometries are analyzed and two-scale regularity results for the solution are given. These axe based on a detailed analysis in weighted Sobolev spaces of the so-called unit-cell problem in which the critical parameters (the period e, the wave number t, and the differentiation order) enter explicitly.
引用
收藏
页码:1053 / 1080
页数:28
相关论文
共 50 条
  • [1] Two-scale FEM for homogenization problems
    Matache, AM
    Schwab, C
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (04): : 537 - 572
  • [2] Sparse Two-Scale FEM for Homogenization Problems
    Matache, A. -M.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2002, 17 (1-4) : 659 - 669
  • [3] Sparse Two-Scale FEM for Homogenization Problems
    A.-M. Matache
    [J]. Journal of Scientific Computing, 2002, 17 : 659 - 669
  • [4] Two-scale homogenization in transmission problems of elasticity with interface jumps
    Orlik, Julia
    [J]. APPLICABLE ANALYSIS, 2012, 91 (07) : 1299 - 1319
  • [5] Two-scale homogenization in the Heisenberg group
    Franchi, B
    Tesi, MC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (06): : 495 - 532
  • [6] Two-scale convergence and homogenization on BV(Ω)
    Amar, M
    [J]. ASYMPTOTIC ANALYSIS, 1998, 16 (01) : 65 - 84
  • [7] Adaptive Two-Scale Nonlinear Homogenization
    Fan, Rong
    Yuan, Zheng
    Fish, Jacob
    [J]. INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2010, 11 (01): : 27 - 36
  • [8] An introduction to the two-scale homogenization method for seismology
    Capdeville, Yann
    Cupillard, Paul
    Singh, Sneha
    [J]. MACHINE LEARNING IN GEOSCIENCES, 2020, 61 : 217 - 306
  • [9] Homogenization of Reynolds equation by two-scale convergence
    Wall, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2007, 28 (03) : 363 - 374
  • [10] Two-scale computational homogenization of calcified hydrogels
    Ayguen, Serhat
    Klinge, Sandra
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,