Normalized matching property of subspace posets in finite classical polar spaces

被引:3
|
作者
Guo, Jun [3 ]
Wang, Kaishun [1 ,2 ]
Li, Fenggao [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Langfang Teachers Coll, Math & Inf Coll, Langfang 065000, Peoples R China
[4] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Peoples R China
关键词
Poset; NM property; Classical polar space; LATTICES;
D O I
10.1016/j.ffa.2012.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be one of n-dimensional classical polar spaces over a finite field with q elements. Then all subspaces of V form a graded poset ordered by inclusion, denoted by P-n(q). Given a fixed maximal totally isotropic subspace P-0 of V. Then each set P[t, P-0; n] = {Q is an element of P-n(q) vertical bar dim(Q boolean AND P-0) >= t} is a graded subposet of P-n(q), where 0 <= t <= v - 1. In this paper we show that P[t, P-0; n] has the NM property, which implies that P[t, P-0; n] has the strong Sperner property and the LYM property. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [1] NORMALIZED MATCHING PROPERTY OF POSETS GENERATED BY ORBITS OF SUBSPACES UNDER FINITE SYMPLECTIC GROUPS
    Guo, Jun
    Li, Fenggao
    Wang, Kaishun
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) : 1711 - 1717
  • [2] Normalized matching property of restricted subspace lattices
    Wang, Jun
    Zhang, Huajun
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 248 - 255
  • [3] Normalized matching property of a class of subspace lattices
    Wang, Jun
    Zhang, HuaJun
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (01): : 43 - 50
  • [4] Designs in finite classical polar spaces
    Kiermaier, Michael
    Schmidt, Kai-Uwe
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, : 1143 - 1162
  • [5] Substructures in finite classical polar spaces
    Metsch K.
    Journal of Geometry, 2011, 101 (1-2) : 185 - 193
  • [6] Tight sets in finite classical polar spaces
    Nakic, Anamari
    Storme, Leo
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 109 - 129
  • [7] Combinatorial structures in finite classical polar spaces
    Cossidente, Antonio
    SURVEYS IN COMBINATORICS 2017, 2017, 440 : 204 - 237
  • [8] On regular systems of finite classical polar spaces
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    Smaldore, Valentino
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 100
  • [9] Partial Ovoids in Classical Finite Polar Spaces
    Andreas Klein
    Designs, Codes and Cryptography, 2004, 31 : 221 - 226
  • [10] Partial ovoids in classical finite polar spaces
    Klein, A
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 221 - 226