Normalized matching property of subspace posets in finite classical polar spaces

被引:3
|
作者
Guo, Jun [3 ]
Wang, Kaishun [1 ,2 ]
Li, Fenggao [4 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math Com Sys, Beijing 100875, Peoples R China
[3] Langfang Teachers Coll, Math & Inf Coll, Langfang 065000, Peoples R China
[4] Hunan Inst Sci & Technol, Coll Math, Yueyang 414006, Peoples R China
关键词
Poset; NM property; Classical polar space; LATTICES;
D O I
10.1016/j.ffa.2012.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be one of n-dimensional classical polar spaces over a finite field with q elements. Then all subspaces of V form a graded poset ordered by inclusion, denoted by P-n(q). Given a fixed maximal totally isotropic subspace P-0 of V. Then each set P[t, P-0; n] = {Q is an element of P-n(q) vertical bar dim(Q boolean AND P-0) >= t} is a graded subposet of P-n(q), where 0 <= t <= v - 1. In this paper we show that P[t, P-0; n] has the NM property, which implies that P[t, P-0; n] has the strong Sperner property and the LYM property. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 50 条
  • [21] Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2
    Stefaan De Winter
    Jeroen Schillewaert
    Combinatorica, 2010, 30 : 25 - 45
  • [22] CHARACTERIZATIONS OF FINITE CLASSICAL POLAR SPACES BY INTERSECTION NUMBERS WITH HYPERPLANES AND SPACES OF CODIMENSION 2
    De Winter, Stefaan
    Schillewaert, Jeroen
    COMBINATORICA, 2010, 30 (01) : 25 - 45
  • [23] Non-classical hyperplanes of finite thick dual polar spaces
    De Bruyn, Bart
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [24] Sets of generators blocking all generators in finite classical polar spaces
    De Beule, Jan
    Hallez, Anja
    Metsch, Klaus
    Storme, Leo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (02) : 318 - 339
  • [25] Cameron-Liebler sets of generators in finite classical polar spaces
    De Boeck, Maarten
    Rodgers, Morgan
    Storme, Leo
    Svob, Andrea
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 167 : 340 - 388
  • [26] An Erdos-Ko-Rado theorem for finite classical polar spaces
    Metsch, Klaus
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (02) : 375 - 397
  • [27] Erratum to: On Nested Chain Decompositions of Normalized Matching Posets of Rank 3
    Elinor Gardner Escamilla
    Andreea Cristina Nicolae
    Paul Russell Salerno
    Shahriar Shahriari
    Jordan Olliver Tirrell
    Order, 2011, 28 (2) : 375 - 375
  • [28] A new matching property for posets and existence of disjoint chains
    Logan, MJ
    Shahriari, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 108 (01) : 77 - 87
  • [29] An Erdős-Ko-Rado theorem for finite classical polar spaces
    Klaus Metsch
    Journal of Algebraic Combinatorics, 2016, 43 : 375 - 397
  • [30] Methods for nesting rank 3 normalized matching rank-unimodal posets
    Hsu, Tim
    Logan, Mark J.
    Shahriari, Shahriar
    DISCRETE MATHEMATICS, 2009, 309 (03) : 521 - 531