The Incoherence of Deep Isotropic Neural Networks Increases Their Performance in Image Classification

被引:1
|
作者
Feng, Wenfeng [1 ]
Zhang, Xin [1 ]
Song, Qiushuang [1 ]
Sun, Guoying [1 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
complex network; neural network architecture; isotropic architecture; image classification;
D O I
10.3390/electronics11213603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although neural-network architectures are critical for their performance, how the structural characteristics of a neural network affect its performance has still not been fully explored. Here, we map architectures of neural networks to directed acyclic graphs (DAGs), and find that incoherence, a structural characteristic to measure the order of DAGs, is a good indicator for the performance of corresponding neural networks. Therefore, we propose a deep isotropic neural-network architecture by folding a chain of the same blocks and then connecting the blocks with skip connections at different distances. Our model, named FoldNet, has two distinguishing features compared with traditional residual neural networks. First, the distances between block pairs connected by skip connections increase from always equal to one to specially selected different values, which lead to more incoherent graphs and let the neural network explore larger receptive fields and, thus, enhance its multi-scale representation ability. Second, the number of direct paths increases from one to multiple, which leads to a larger proportion of shorter paths and, thus, improves the direct propagation of information throughout the entire network. Image-classification results on CIFAR-10 and Tiny ImageNet benchmarks suggested that our new network architecture performs better than traditional residual neural networks. FoldNet with 25.4M parameters can achieve 72.67% top-1 accuracy on the Tiny ImageNet after 100 epochs, which is competitive compared with the-state-of-art results on the Tiny ImageNet.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Auroral Image Classification With Deep Neural Networks
    Kvammen, Andreas
    Wickstrom, Kristoffer
    McKay, Derek
    Partamies, Noora
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
  • [2] Deep Convolution Neural Networks for Image Classification
    Kulkarni, Arun D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 18 - 23
  • [3] The relative performance of ensemble methods with deep convolutional neural networks for image classification
    Ju, Cheng
    Bibaut, Aurelien
    van der Laan, Mark
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (15) : 2800 - 2818
  • [4] Assessing performance of deep neural networks used for image classification by stress testing
    Young, A. T.
    Pfau, J.
    Keiser, M. J.
    Wei, M.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (07) : S119 - S119
  • [5] THE PERFORMANCE OF NEURAL NETWORKS IN ASTRONOMICAL IMAGE CLASSIFICATION
    ODEWAHN, SC
    ASTRONOMY FROM WIDE-FIELD IMAGING, 1994, (161): : 235 - 241
  • [6] Representation of Imprecision in Deep Neural Networks for Image Classification
    Zhang, Zuowei
    Liu, Zhunga
    Ning, Liangbo
    Martin, Arnaud
    Xiong, Jiexuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1199 - 1212
  • [7] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [8] Brain CT Image Classification with Deep Neural Networks
    Da, Cheng
    Zhang, Haixian
    Sang, Yongsheng
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 653 - 662
  • [9] Data Selective Deep Neural Networks For Image Classification
    Mendonca, Marcele O. K.
    Ferreira, Jonathas O.
    Diniz, Paulo S. R.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1376 - 1380
  • [10] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407