The Incoherence of Deep Isotropic Neural Networks Increases Their Performance in Image Classification

被引:1
|
作者
Feng, Wenfeng [1 ]
Zhang, Xin [1 ]
Song, Qiushuang [1 ]
Sun, Guoying [1 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
complex network; neural network architecture; isotropic architecture; image classification;
D O I
10.3390/electronics11213603
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although neural-network architectures are critical for their performance, how the structural characteristics of a neural network affect its performance has still not been fully explored. Here, we map architectures of neural networks to directed acyclic graphs (DAGs), and find that incoherence, a structural characteristic to measure the order of DAGs, is a good indicator for the performance of corresponding neural networks. Therefore, we propose a deep isotropic neural-network architecture by folding a chain of the same blocks and then connecting the blocks with skip connections at different distances. Our model, named FoldNet, has two distinguishing features compared with traditional residual neural networks. First, the distances between block pairs connected by skip connections increase from always equal to one to specially selected different values, which lead to more incoherent graphs and let the neural network explore larger receptive fields and, thus, enhance its multi-scale representation ability. Second, the number of direct paths increases from one to multiple, which leads to a larger proportion of shorter paths and, thus, improves the direct propagation of information throughout the entire network. Image-classification results on CIFAR-10 and Tiny ImageNet benchmarks suggested that our new network architecture performs better than traditional residual neural networks. FoldNet with 25.4M parameters can achieve 72.67% top-1 accuracy on the Tiny ImageNet after 100 epochs, which is competitive compared with the-state-of-art results on the Tiny ImageNet.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Are Classification Deep Neural Networks Good for Blind Image Watermarking?
    Vukotic, Vedran
    Chappelier, Vivien
    Furon, Teddy
    ENTROPY, 2020, 22 (02)
  • [22] Backdoor Attacks on Image Classification Models in Deep Neural Networks
    ZHANG Quanxin
    MA Wencong
    WANG Yajie
    ZHANG Yaoyuan
    SHI Zhiwei
    LI Yuanzhang
    ChineseJournalofElectronics, 2022, 31 (02) : 199 - 212
  • [23] The classification and denoising of image noise based on deep neural networks
    Liu, Fan
    Song, Qingzeng
    Jin, Guanghao
    APPLIED INTELLIGENCE, 2020, 50 (07) : 2194 - 2207
  • [24] Impact of optical scatter on image classification with deep neural networks
    King, Page
    Koshel, R. John
    APPLICATIONS OF MACHINE LEARNING 2023, 2023, 12675
  • [25] Compact Deep Neural Networks for Device Based Image Classification
    Zheng, Zejia
    Lit, Zhu
    Nagar, Abhishek
    Park, Kyungmo
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2015,
  • [26] The classification and denoising of image noise based on deep neural networks
    Fan Liu
    Qingzeng Song
    Guanghao Jin
    Applied Intelligence, 2020, 50 : 2194 - 2207
  • [27] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205
  • [28] CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Zhang, Yameng
    Li, Liutong
    Zhu, Mingcang
    He, Yong
    Li, Minqi
    Guo, Zhengqiang
    He, Yue
    Yu, Zhenlu
    Yang, Xiaocheng
    Liu, Xin
    Luo, Jianhua
    Yang, Taoli
    Liu, Yalan
    Li, Jiang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1828 - 1831
  • [29] Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review
    Rawat, Waseem
    Wang, Zenghui
    NEURAL COMPUTATION, 2017, 29 (09) : 2352 - 2449
  • [30] Deep neural networks are superior to dermatologists in melanoma image classification
    Brinker, Titus J.
    Hekler, Achim
    Enk, Alexander H.
    Berking, Carola
    Haferkamp, Sebastian
    Hauschild, Axel
    Weichenthal, Michael
    Klode, Joachim
    Schadendorf, Dirk
    Holland-Letz, Tim
    von Kalle, Christof
    Froehling, Stefan
    Schilling, Bastian
    Utikal, Jochen S.
    EUROPEAN JOURNAL OF CANCER, 2019, 119 : 11 - 17