Representation of Imprecision in Deep Neural Networks for Image Classification

被引:4
|
作者
Zhang, Zuowei [1 ,2 ]
Liu, Zhunga [1 ]
Ning, Liangbo [1 ]
Martin, Arnaud [2 ]
Xiong, Jiexuan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Univ Rennes 1, Inst Rech Informat & Syst Aleatoires, F-22300 Lannion, France
基金
中国国家自然科学基金;
关键词
Training; Feature extraction; Image reconstruction; Image classification; Task analysis; Learning systems; Evidence theory; Belief functions; deep learning; imprecision; meta-category; uncertainty;
D O I
10.1109/TNNLS.2023.3329712
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantification and reduction of uncertainty in deep-learning techniques have received much attention but ignored how to characterize the imprecision caused by such uncertainty. In some tasks, we prefer to obtain an imprecise result rather than being willing or unable to bear the cost of an error. For this purpose, we investigate the representation of imprecision in deep-learning (RIDL) techniques based on the theory of belief functions (TBF). First, the labels of some training images are reconstructed using the learning mechanism of neural networks to characterize the imprecision in the training set. In the process, a label assignment rule is proposed to reassign one or more labels to each training image. Once an image is assigned with multiple labels, it indicates that the image may be in an overlapping region of different categories from the feature perspective or the original label is wrong. Second, those images with multiple labels are rechecked. As a result, the imprecision (multiple labels) caused by the original labeling errors will be corrected, while the imprecision caused by insufficient knowledge is retained. Images with multiple labels are called imprecise ones, and they are considered to belong to meta-categories, the union of some specific categories. Third, the deep network model is retrained based on the reconstructed training set, and the test images are then classified. Finally, some test images that specific categories cannot distinguish will be assigned to meta-categories to characterize the imprecision in the results. Experiments based on some remarkable networks have shown that RIDL can improve accuracy (AC) and reasonably represent imprecision both in the training and testing sets.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Discriminative feature representation for image classification via multimodal multitask deep neural networks
    Mei, Shuang
    Yang, Hua
    Yin, Zhouping
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (01)
  • [2] Auroral Image Classification With Deep Neural Networks
    Kvammen, Andreas
    Wickstrom, Kristoffer
    McKay, Derek
    Partamies, Noora
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
  • [3] Deep Convolution Neural Networks for Image Classification
    Kulkarni, Arun D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 18 - 23
  • [4] Deep neural networks-based relevant latent representation learning for hyperspectral image classification
    Sellami, Akrem
    Tabbone, Salvatore
    PATTERN RECOGNITION, 2022, 121
  • [5] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [6] Brain CT Image Classification with Deep Neural Networks
    Da, Cheng
    Zhang, Haixian
    Sang, Yongsheng
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 653 - 662
  • [7] Data Selective Deep Neural Networks For Image Classification
    Mendonca, Marcele O. K.
    Ferreira, Jonathas O.
    Diniz, Paulo S. R.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1376 - 1380
  • [8] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407
  • [9] Deep Neural Networks for Remote Sensing Image Classification
    Miniello, Giorgia
    La Salandra, Marco
    Vino, Gioacchino
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 117 - 128
  • [10] Deep Memristive Cellular Neural Networks for Image Classification
    Horvath, Andras
    Ascoli, Alon
    Tatzlaff, Ronald
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, : 457 - 460