SMOOTH AND NON-SMOOTH REGULARIZATIONS OF THE NONLINEAR DIFFUSION EQUATION

被引:5
|
作者
Tomassetti, Giuseppe [1 ]
机构
[1] Roma Tre Univ, Dept Engn, Civil Engn Sect, Via Vito Volterra 62, I-00152 Rome, Italy
来源
关键词
Diffusion; backward-parabolic partial differential equations; viscosity; hysteresis; CAHN-HILLIARD EQUATION; BACKWARD PARABOLIC EQUATIONS; PSEUDOPARABOLIC REGULARIZATION; THERMOMECHANICS; THERMODYNAMICS; BEHAVIOR; SYSTEM; LIMIT; HEAT;
D O I
10.3934/dcdss.2017078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We illustrate an alternative derivation of the viscous regularization of a nonlinear forward-backward diffusion equation which was studied in [A. Novick-Cohen and R. L. Pego. Trans. Amer. Math. Soc., 324:331-351]. We propose and discuss a new "non-smooth" variant of the viscous regularization and we offer an heuristic argument that indicates that this variant should display interesting hysteretic effects. Finally, we offer a constructive proof of existence of solutions for the viscous regularization based on a suitable approximation scheme.
引用
收藏
页码:1519 / 1537
页数:19
相关论文
共 50 条
  • [41] A numerical method for the heat equation with non-smooth corner conditions
    Jumarhon, B
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (10): : 727 - 736
  • [42] Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular Volterra integral equation
    Zakeri, Gholam-Ali
    Navab, Mitra
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (18) : 6548 - 6557
  • [43] Transport equation and Cauchy problem for non-smooth vector fields
    Ambrosio, Luigi
    [J]. CALCULUS OF VARIATIONS AND NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 1927 : 1 - 41
  • [44] Regularity and discrete schemes for the heat equation on non-smooth domains
    Chin, Pius W. M.
    Lubuma, Jean M. -S.
    Patidar, Kailash C.
    [J]. COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1170 - +
  • [45] A non-smooth regularization of a forward-backward parabolic equation
    Bonetti, Elena
    Colli, Pierluigi
    Tomassetti, Giuseppe
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (04): : 641 - 661
  • [46] Anticipative Stochastic Differential Equations with Non-smooth Diffusion Coefficient
    Zong Xia Liang
    [J]. Acta Mathematica Sinica, 2006, 22 : 1473 - 1480
  • [47] Null controllability for the semilinear heat equation in a non-smooth domain
    Ali-Ziane, Tarik
    Ferhoune, Zahia
    Zair, Ouahiba
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (03) : 229 - 234
  • [48] Sampling from Non-smooth Distributions Through Langevin Diffusion
    Tung Duy Luu
    Jalal Fadili
    Christophe Chesneau
    [J]. Methodology and Computing in Applied Probability, 2021, 23 : 1173 - 1201
  • [49] Screen problem for vector Helmholtz equation in non-smooth domains
    Levan, B
    Sigua, A
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 129 - 132
  • [50] Non-smooth Characteristic on Biological Surface and Development of Bionics Non-smooth Diamond Bit
    Zhong, Chongmei
    [J]. ADVANCES IN MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-4, 2013, 712-715 : 360 - 365