In this paper we prove the existence and uniqueness of the solutions to the one-dimensional linear stochastic differential equation with Skorohod integral \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
X_{t} {\left( w \right)} = \eta {\left( w \right)} + {\int_0^t {a_{s} X_{s} {\left( w \right)}d} }{\text{\bf W}}_{s} + {\int_0^t {b_{s} X_{s} {\left( w \right)}ds,t \in {\left[ {0,1} \right]}} },
$$\end{document} where (Ws) is the canonical Wiener process defined on the standard Wiener space (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript W}$$\end{document} ,ℋ , μ), a is non-smooth and adapted, but η and b may be anticipating to the filtration generated by (Ws). The intention of the paper is to eliminate the regularity of the diffusion coefficient a in the Malliavin sense, in the existing literature. The idea is to approach the non-smooth diffusion coefficient a by smooth ones.