THE ENSEMBLE KALMAN FILTER FOR MULTIDIMENSIONAL BIOECONOMIC MODELS

被引:9
|
作者
Kvamsdal, Sturla F. [1 ]
Sandal, Leif K. [2 ]
机构
[1] SNF Ctr Appl Res NHH, N-5045 Bergen, Norway
[2] NHH Norwegian Sch Econ, N-5045 Bergen, Norway
关键词
Barents Sea; bioeconomics; ecosystem-based management; ensemble Kalman filter; multidimensional models; state space model; PARAMETER-ESTIMATION; STOCK; UNCERTAINTY; MANAGEMENT; CAPELIN; INDEX;
D O I
10.1111/nrm.12070
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To integrate economic considerations into management decisions in ecosystem frameworks, we need to build models that capture observed system dynamics and incorporate existing knowledge of ecosystems, while at the same time accommodating economic analysis. The main constraint for models to serve in economic analysis is dimensionality. In addition, to apply in long-term management analysis, models should be stable in terms of adjustments to new observations. We use the ensemble Kalman filter to fit relatively simple models to ecosystem or foodweb data and estimate parameters that are stable over the observed variability in the data. The filter also provides a lower bound on the noise terms that a stochastic analysis requires. In this paper, we apply the filter to model the main interactions in the Barents Sea ecosystem. In a comparison, our method outperforms a regression-based approach.
引用
收藏
页码:321 / 347
页数:27
相关论文
共 50 条
  • [41] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    [J]. WATER RESOURCES RESEARCH, 2009, 45
  • [42] Data assimilation for phase-field models based on the ensemble Kalman filter
    Sasaki, Kengo
    Yamanaka, Akinori
    Ito, Shin-ichi
    Nagao, Hiromichi
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2018, 141 : 141 - 152
  • [43] Ensemble random forest filter: An alternative to the ensemble Kalman filter for inverse modeling
    Godoy, Vanessa A.
    Napa-Garcia, Gian F.
    Jaime Gomez-Hernandez, J.
    [J]. JOURNAL OF HYDROLOGY, 2022, 615
  • [44] State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
    Zhang, Hongjuan
    Franssen, Harrie-Jan Hendricks
    Han, Xujun
    Vrugt, Jasper A.
    Vereecken, Harry
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (09) : 4927 - 4958
  • [45] Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter
    Drovandi, Christopher
    Everitt, Richard G.
    Golightly, Andrew
    Prangle, Dennis
    [J]. BAYESIAN ANALYSIS, 2022, 17 (01): : 223 - 260
  • [46] Combining ensemble Kalman filter and multiresolution analysis for efficient assimilation into adaptive mesh models
    Siripatana, A.
    Giraldi, L.
    Le Maitre, O. P.
    Knio, O. M.
    Hoteit, I
    [J]. COMPUTATIONAL GEOSCIENCES, 2019, 23 (06) : 1259 - 1276
  • [47] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    ELSheikh, A. H.
    Pain, C. C.
    Fang, F.
    Gomes, J. L. M. A.
    Navon, I. M.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (04) : 877 - 897
  • [48] Integration of microseismic monitoring data into coupled flow and geomechanical models with ensemble Kalman filter
    Tarrahi, Mohammadali
    Jafarpour, Behnam
    Ghassemi, Ahmad
    [J]. WATER RESOURCES RESEARCH, 2015, 51 (07) : 5177 - 5197
  • [49] Comparison of Two Models for Prediction of Seismic Streamer State Using the Ensemble Kalman Filter
    Grindheim, Jan Vidar
    Revhaug, Inge
    Pedersen, Egil
    Solheim, Peder
    [J]. JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [50] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    [J]. ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147