Estimating the Inf-Sup Constant in Reduced Basis Methods for Time-Harmonic Maxwell's Equations

被引:21
|
作者
Hess, Martin W. [1 ]
Grundel, Sara [1 ]
Benner, Peter [1 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
关键词
Electromagnetic (EM) fields; finite-element methods; numerical analysis; reduced-order systems; APPROXIMATION;
D O I
10.1109/TMTT.2015.2473157
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reduced basis method (RBM) generates low-order models of parametrized partial differential equations. These allow for the efficient evaluation of parametrized models in many-query and real-time contexts. We use the RBM to generate low-order models of microscale models under variation of frequency, geometry, and material parameters. In particular, we focus on the efficient estimation of the discrete stability constant used in the reducced basis error estimation. A good estimation of the discrete stability constant is a challenging problem for Maxwell's equations, but is needed to yield rigorous bounds on the model approximation error. We therefore test and compare
引用
收藏
页码:3549 / 3557
页数:9
相关论文
共 50 条
  • [31] A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements
    Tsuji, Paul
    Engquist, Bjorn
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3770 - 3783
  • [32] Non-conformal domain decomposition methods for time-harmonic Maxwell equations
    Shao, Yang
    Peng, Zhen
    Lim, Kheng Hwee
    Lee, Jin-Fa
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2145): : 2433 - 2460
  • [33] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [34] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [35] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [36] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [37] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [38] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [39] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [40] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758