Estimating the Inf-Sup Constant in Reduced Basis Methods for Time-Harmonic Maxwell's Equations

被引:21
|
作者
Hess, Martin W. [1 ]
Grundel, Sara [1 ]
Benner, Peter [1 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
关键词
Electromagnetic (EM) fields; finite-element methods; numerical analysis; reduced-order systems; APPROXIMATION;
D O I
10.1109/TMTT.2015.2473157
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The reduced basis method (RBM) generates low-order models of parametrized partial differential equations. These allow for the efficient evaluation of parametrized models in many-query and real-time contexts. We use the RBM to generate low-order models of microscale models under variation of frequency, geometry, and material parameters. In particular, we focus on the efficient estimation of the discrete stability constant used in the reducced basis error estimation. A good estimation of the discrete stability constant is a challenging problem for Maxwell's equations, but is needed to yield rigorous bounds on the model approximation error. We therefore test and compare
引用
收藏
页码:3549 / 3557
页数:9
相关论文
共 50 条
  • [21] INF-SUP STABLE FINITE ELEMENT METHODS FOR THE LANDAU-LIFSHITZ-GILBERT AND HARMONIC MAP HEAT FLOW EQUATIONS
    Vicente Gutierrez-Santacreu, Juan
    Restelli, Marco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2565 - 2591
  • [22] Solution of the time-harmonic, Maxwell equations using discontinuous Galerkin methods
    Dolean, V.
    Fol, H.
    Lanteri, S.
    Perrussel, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 435 - 445
  • [23] Domain decomposition methods for time-harmonic Maxwell equations:: Numerical results
    Rodríguez, AA
    Valli, A
    RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 157 - 171
  • [24] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [25] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [26] A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations
    Chen, Yanlai
    Hesthaven, Jan S.
    Maday, Yvon
    Rodriguez, Jeronimo
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (23-24) : 1295 - 1300
  • [27] DISCONTINUOUS GALERKIN DISCRETIZATIONS OF OPTIMIZED SCHWARZ METHODS FOR SOLVING THE TIME-HARMONIC MAXWELL'S EQUATIONS
    El Bouajaji, Mohamed
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Perrussel, Ronan
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 572 - 592
  • [28] Lp estimates of time-harmonic Maxwell's equations in a bounded domain
    Bao, Gang
    Li, Ying
    Zhou, Zhengfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) : 3674 - 3686
  • [29] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [30] Homogenization of time-harmonic Maxwell's equations in nonhomogeneous plasmonic structures
    Maier, Matthias
    Margetis, Dionisios
    Mellet, Antoine
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377