Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements

被引:0
|
作者
Dong, Zhounan [1 ]
Jin, Shuanggen [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven as a promising remote sensing technique. The Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, which provide a great opportunity to remotely sense the Earth's surface geophysical parameters with unprecedented spatial and temporal resolution. However, it is still under-developing and testing for land surface soil moisture (SM) retrieval. In this paper, we gridded CYGNSS individual DDM-derived reflectivity into the Equal-Area Scalable Earth Grid 2 (EASE-Grid 2) projection, which is aligned with SMAP SM products, to establish a GNSS-R SM retrieval model in Southeast China. In order to refine the SM inversion algorithm, we also adopt the vegetation opacity and roughness coefficient data to mitigate the attenuation effect of vegetation and surface roughness. The accuracy of the CYGNSS derived SM is evaluated and the characteristics of the gridded retrieval SM time series in southeastern China are analyzed.
引用
收藏
页码:1961 / 1965
页数:5
相关论文
共 50 条
  • [31] In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model Based on LSTM
    Zhang, Tianlong
    Yang, Lei
    Nan, Hongtao
    Yin, Cong
    Sun, Bo
    Yang, Dongkai
    Hong, Xuebao
    Lopez-Baeza, Ernesto
    REMOTE SENSING, 2023, 15 (10)
  • [32] Ground-based GNSS-R soil moisture retrieval based on correlation power correction
    Hong X.
    Zhang B.
    Ruan H.
    Han M.
    Yang D.
    Song S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (08): : 1558 - 1564
  • [33] Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns
    Li, Fei
    Peng, Xuefeng
    Chen, Xiuwan
    Liu, Maolin
    Xu, Liwen
    SENSORS, 2018, 18 (08)
  • [34] Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSS-R
    Zhang S.
    Guo Q.
    Ma Z.
    Liu Q.
    Hu S.
    Zhou X.
    Zhao H.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01): : 15 - 26
  • [35] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    REMOTE SENSING, 2022, 14 (14)
  • [36] Retrieval of Sea Surface Rainfall Intensity Using Spaceborne GNSS-R Data
    Bu, Jinwei
    Yu, Kegen
    Han, Shuai
    Qian, Nijia
    Lin, Yiruo
    Wang, Jin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Initial results of China's GNSS-R airborne campaign: soil moisture retrievals
    Wan, Wei
    Bai, Weihua
    Zhao, Limin
    Long, Di
    Sun, Yueqiang
    Meng, Xiangguang
    Chen, Hua
    Cui, Xiai
    Hong, Yang
    SCIENCE BULLETIN, 2015, 60 (10) : 964 - 971
  • [38] Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation
    Setti, Paulo T.
    Tabibi, Sajad
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (20) : 6422 - 6441
  • [39] NEW APPROACH TO SEA SURFACE WIND RETRIEVAL FROM GNSS-R MEASUREMENTS
    Park, Hyuk
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Camps, Adriano
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1469 - 1472
  • [40] RFI Mapped by Spaceborne GNSS-R Data
    Chew, Clara
    Roberts, T. Maximillian
    Lowe, Steve
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2023, 70 (04):