Soil Moisture Retrieval in Southeast China from Spaceborne GNSS-R Measurements

被引:0
|
作者
Dong, Zhounan [1 ]
Jin, Shuanggen [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Global Navigation Satellite System-Reflectometry (GNSS-R) has been proven as a promising remote sensing technique. The Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, which provide a great opportunity to remotely sense the Earth's surface geophysical parameters with unprecedented spatial and temporal resolution. However, it is still under-developing and testing for land surface soil moisture (SM) retrieval. In this paper, we gridded CYGNSS individual DDM-derived reflectivity into the Equal-Area Scalable Earth Grid 2 (EASE-Grid 2) projection, which is aligned with SMAP SM products, to establish a GNSS-R SM retrieval model in Southeast China. In order to refine the SM inversion algorithm, we also adopt the vegetation opacity and roughness coefficient data to mitigate the attenuation effect of vegetation and surface roughness. The accuracy of the CYGNSS derived SM is evaluated and the characteristics of the gridded retrieval SM time series in southeastern China are analyzed.
引用
下载
收藏
页码:1961 / 1965
页数:5
相关论文
共 50 条
  • [21] Standard Deviation of Spaceborne GNSS-R Ocean Scatterometry Measurements
    Nan, Yang
    Li, Weiqiang
    Ye, Shirong
    Du, Hao
    Cardellach, Estel
    Rius, Antonio
    Liu, Jingnan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry
    Zhang, Guodong
    Yang, Dongkai
    Yu, Yongqing
    Wang, Feng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 649 - 658
  • [23] The study of soil moisture retrieval from GNSS-R signals based on AIEM model and experiment data
    Mao, Kebiao
    Wang, Jianming
    Zhang, Mengyang
    Tang, Huajun
    Zhou, Qingbo
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (03): : 295 - 301
  • [24] HIGH RESOLUTION SOIL MOISTURE RETRIEVAL USING OPTICAL AND GNSS-R AIRBORNE DATA
    Castellvi, J.
    Camps, A.
    Corbera, J.
    Alamus, R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6209 - 6210
  • [25] Soil Moisture Estimation Based on GNSS-R Signal
    Yu, Pengwei
    Zhang, Lei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTING TECHNOLOGY, 2016, 64 : 130 - 135
  • [26] Ground based GNSS-R observations for soil moisture
    Yan Song-Hua
    Gong Jian-Ya
    Zhang Xun-Xie
    Li Dong-Xiu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2735 - 2744
  • [27] Review of GNSS-R Technology for Soil Moisture Inversion
    Yang, Changzhi
    Mao, Kebiao
    Guo, Zhonghua
    Shi, Jiancheng
    Bateni, Sayed M.
    Yuan, Zijin
    REMOTE SENSING, 2024, 16 (07)
  • [28] Soil Moisture Content Estimation Using GNSS Reflectometry (GNSS-R)
    Malik, Jabir Shabbir
    Zhang Jingrui
    Naqvi, Najam Abbas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [29] An Analysis of a Commercial GNSS-R Soil Moisture Dataset
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    Horton, Dustin
    McKague, Darren S.
    Twigg, Dorina
    Russel, Anthony
    Policelli, Frederick S.
    Ouellette, Jeffrey D.
    Bindlish, Rajat
    Park, Jeonghwan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15480 - 15493
  • [30] Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Camps, Adriano
    Vall-llossera, Merce
    Valencia, Enric
    Fernando Marchan-Hernandez, Juan
    Ramos-Perez, Isaac
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11): : 3616 - 3624