Temperature Dependence of Carrier Transport of a Silicon Nanowire Schottky-Barrier Field-Effect Transistor

被引:20
|
作者
Yang, W. F. [1 ]
Lee, S. J. [1 ]
Liang, G. C. [1 ]
Eswar, R. [1 ]
Sun, Z. Q. [1 ]
Kwong, D. L. [1 ]
机构
[1] Natl Univ Singapore, Silicon Nano Device Lab, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
Barrier height; carrier injection; Schottky-barrier (SB) MOSFET; silicon nanowire (SiNW); temperature dependence;
D O I
10.1109/TNANO.2008.2003353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, temperature dependence of the characteristics of a silicon nanowire (SiNW) Schottky-barrier (SB) MOSFET device has been investigated in detail. Palladium or titanium source and drain SiNW MOSFETS integrated with an Al2O3/TaN/Ta gate stack have been fabricated and characterized at different temperatures. Results show that SB SiNW MOSFETS Operate with different principles, compared to conventional MOSFETS. From the In, and transconductance variation with temperature, it is found that the device operation is dominated by carrier injection at the interface of the source and channel rather than the carrier transport inside the NW channel. Furthermore, this carrier injection is determined by the competition between SB tunneling and thermionic emission. Therefore, the SB height and width play an important role in SB SiNW MOSFET operation, and effective barrier height has been extracted based on I-DS-V-GS characteristics at different temperatures. In addition, the profile of SB at the source/channel interface was analyzed with a qualitative analysis of the subthreshold swing.
引用
收藏
页码:728 / 732
页数:5
相关论文
共 50 条
  • [31] Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors
    J. Knoch
    M. Zhang
    J. Appenzeller
    S. Mantl
    Applied Physics A, 2007, 87 : 351 - 357
  • [32] Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors
    Knoch, J.
    Zhang, M.
    Appenzeller, J.
    Mantl, S.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (03): : 351 - 357
  • [33] Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor
    Lee, Ryoongbin
    Kwon, Dae Woong
    Kim, Sihyun
    Kim, Sangwan
    Mo, Hyun-Sun
    Kim, Dae Hwan
    Park, Byung-Gook
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (12)
  • [34] Nanowire-Width and Dopant-Species Dependences of Carrier Transport Characteristics of Schottky Barrier Source/Drain Nanowire Field-Effect Transistors
    Ishikawa, Takayuki
    Saitoh, Masumi
    Ota, Kensuke
    Tanaka, Chika
    Numata, Toshinori
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (04)
  • [35] PROPERTIES OF A SCHOTTKY-BARRIER TRANSISTOR AND CARRIER-COUPLING DEVICES
    CHINO, K
    SUZUKI, T
    MIZUSHIMA, Y
    REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1975, 23 (5-6): : 541 - 545
  • [36] HOT CARRIER TRANSPORT EFFECT IN SCHOTTKY-BARRIER DIODE GROWN BY MBE
    HWANG, CG
    DUTTON, RW
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1988, 7 (05) : 578 - 583
  • [37] Protein biosensor based on Schottky barrier nanowire field effect transistor
    Smolyarova, Tatyana E.
    Shanidze, Lev, V
    Lukyanenko, Anna, V
    Baron, Filipp A.
    Krasitskaya, Vasilisa V.
    Kichkailo, Anna S.
    Tarasov, Anton S.
    Volkov, Nikita
    TALANTA, 2022, 239
  • [38] Protein biosensor based on Schottky barrier nanowire field effect transistor
    Smolyarova, Tatyana E.
    Shanidze, Lev V.
    Lukyanenko, Anna V.
    Baron, Filipp A.
    Krasitskaya, Vasilisa V.
    Kichkailo, Anna S.
    Tarasov, Anton S.
    Volkov, Nikita
    Talanta, 2022, 239
  • [39] SCHOTTKY-BARRIER FIELD-EFFECT TRANSISTORS OF 3C-SIC
    YOSHIDA, S
    DAIMON, H
    YAMANAKA, M
    SAKUMA, E
    MISAWA, S
    ENDO, K
    JOURNAL OF APPLIED PHYSICS, 1986, 60 (08) : 2989 - 2991