An Improved Early Termination Sparse Interpolation Algorithm for Multivariate Polynomials

被引:1
|
作者
Huang, Qiaolong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Math Mechanizat, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Ben-Or and Tiwari's algorithm; early termination algorithm; recursive sparse interpolation;
D O I
10.1007/s11424-017-6143-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an improved early termination algorithm for sparse black box multivariate polynomials, which reduces the interpolation problem into several sub-interpolation problems with less variables and fewer terms. Actually, all interpolations are eventually reduced to the interpolation of a list of polynomials with less terms than that of the original polynomial. Extensive experiments show that the new algorithm is much faster than the original algorithm.
引用
收藏
页码:539 / 551
页数:13
相关论文
共 50 条
  • [41] Multivariate interpolation by polynomials and radial basis functions
    Schaback, R
    CONSTRUCTIVE APPROXIMATION, 2005, 21 (03) : 293 - 317
  • [42] Algorithms for Computing Sparse Shifts for Multivariate Polynomials
    Dima Yu. Grigoriev
    Y. N. Lakshman
    Applicable Algebra in Engineering, Communication and Computing, 2000, 11 : 43 - 67
  • [43] Matrix recursive polynomial interpolation algorithm: An algorithm for computing the interpolation polynomials
    Messaoudi, A.
    Sadaka, R.
    Sadok, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373
  • [44] Algorithms for computing sparse shifts for multivariate polynomials
    Grigoriev, DY
    Lakshman, YN
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 11 (01) : 43 - 67
  • [45] Multivariate polynomial interpolation using even and odd polynomials
    Carnicer, J. M.
    Godes, C.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (01) : 27 - 49
  • [46] SLRA Interpolation for Approximate GCD of Several Multivariate Polynomials
    Nagasaka, Kosaku
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 470 - 479
  • [47] On the approximation of multivariate entire functions by Lagrange interpolation polynomials
    Calvi, Jean-Paul
    Phung Van Manh
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2015, 8 : 11 - 16
  • [48] Multivariate Lagrange interpolation and polynomials of one quaternionic variable
    Waldron, Shayne
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2024, 17 : 20 - 27
  • [49] Multivariate polynomial interpolation using even and odd polynomials
    J. M. Carnicer
    C. Godés
    BIT Numerical Mathematics, 2018, 58 : 27 - 49
  • [50] Improved Hermite multivariate polynomial interpolation
    Gaborit, Philippe
    Ruatta, Olivier
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 143 - +