Algorithms for Computing Sparse Shifts for Multivariate Polynomials

被引:0
|
作者
Dima Yu. Grigoriev
Y. N. Lakshman
机构
[1] IRMAR Université Rennes-1 Campus Beaulieu,
[2] 35042 Rennes,undefined
[3] France (e-mail: dima@maths.univ-rennes1.fr),undefined
[4] Computing Science Research,undefined
[5] Bell Labs.,undefined
[6] 600 Mountain Hill,undefined
[7] Murray Hill,undefined
[8] NJ,undefined
[9] 07974,undefined
[10] USA (e-mail: ynl@research.bell-labs.com),undefined
关键词
Keywords: Shifted sparse polynomial, Gröbner bases, Complexity. ">;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the problem of finding t-sparse shifts for multivariate polynomials. Given a polynomial f∈ℱ[x1, x2, …, xn] of degree d, and a positive integer t, we consider the problem of representing f(x) as a ?-linear combination of the power products of ui where ui = xi−bi for some bi∈?, an extension of ℱ, for i = 1, …, n, i.e., f = ∑jFjuαj, in which at most t of the Fj are non-zero. We provide sufficient conditions for uniqueness of sparse shifts for multivariate polynomials, prove tight bounds on the degree of the polynomial being interpolated in terms of the sparsity bound t and a bound on the size of the coefficients of the polynomial in the standard representation, and describe two new efficient algorithms for computing sparse shifts for a multivariate polynomial.
引用
收藏
页码:43 / 67
页数:24
相关论文
共 50 条
  • [1] Algorithms for computing sparse shifts for multivariate polynomials
    Grigoriev, DY
    Lakshman, YN
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2000, 11 (01) : 43 - 67
  • [2] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Min Tang
    Bingyu Li
    Zhenbing Zeng
    Journal of Systems Science and Complexity, 2018, 31 : 552 - 568
  • [3] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    TANG Min
    LI Bingyu
    ZENG Zhenbing
    JournalofSystemsScience&Complexity, 2018, 31 (02) : 552 - 568
  • [4] Computing Sparse GCD of Multivariate Polynomials via Polynomial Interpolation
    Tang, Min
    Li, Bingyu
    Zeng, Zhenbing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2018, 31 (02) : 552 - 568
  • [5] Algorithms for computing greatest common divisors of parametric multivariate polynomials
    Kapur, Deepak
    Lu, Dong
    Monagan, Michael
    Sun, Yao
    Wang, Dingkang
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 102 : 3 - 20
  • [6] Sparse Shifts for Univariate Polynomials
    Y. N. Lakshman
    B. David Saunders
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 561 - 562
  • [7] Sparse shifts for univariate polynomials
    Lakshman, YN
    Saunders, BD
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (05) : 351 - 364
  • [8] Algorithms for computing sparsest shifts of polynomials in power, Chebyshev, and Pochhammer bases
    Giesbrecht, M
    Kaltofen, E
    Lee, WS
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 36 (3-4) : 401 - 424
  • [9] FACTORING SPARSE MULTIVARIATE POLYNOMIALS
    GATHEN, JV
    KALTOFEN, E
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 31 (02) : 265 - 287
  • [10] Computing Sparse Multiples of Polynomials
    Giesbrecht, Mark
    Roche, Daniel S.
    Tilak, Hrushikesh
    ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 266 - 278