ON COMPLETE MONOTONICITY OF CERTAIN SPECIAL FUNCTIONS

被引:4
|
作者
Zhang, Ruiming [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Complete monotonicity; orthogonal polynomials; Askey-Wilson polynomials; confluent basic hypergeometric series; q-Bessel functions; Airy function; PLANCHEREL-ROTACH ASYMPTOTICS; Q-ORTHOGONAL POLYNOMIALS; ZEROS; GAMMA;
D O I
10.1090/proc/13878
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an entire function f(z) that has only negative zeros, we shall prove that all the functions of type f((m)) (x)/f((n)) (x), m > n are completely monotonic. Examples of this type are given for Laguerre polynomials, ultraspherical polynomials, Jacobi polynomials, Stieltjes-Wigert polynomials, q-Laguerre polynomials, Askey-Wilson polynomials, Ramanujan function, q-exponential functions, q-Bessel functions, Euler's gamma function, Airy function, modified Bessel functions of the first and the second kind, and the confluent basic hypergeometric series.
引用
收藏
页码:2049 / 2062
页数:14
相关论文
共 50 条