Estimation of Water Depths and Turbidity From Hyperspectral Imagery Using Support Vector Regression

被引:38
|
作者
Pan, Zhigang [1 ]
Glennie, Craig [1 ]
Legleiter, Carl [2 ]
Overstreet, Brandon [2 ]
机构
[1] Univ Houston, Geosensing Syst Engn & Sci Dept, Houston, TX 77204 USA
[2] Univ Wyoming, Dept Geog, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
Bathymetry; hyperspectral; support vector regression (SVR); turbidity; BATHYMETRY; RETRIEVAL;
D O I
10.1109/LGRS.2015.2453636
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose and evaluate an empirical method for water depth determination from hyperspectral imagery when the benthic layer is visible using support vector regression (SVR). The implementation of the empirical method is presented, and its ability to estimate water depths is compared with a more commonly used band ratio method for two distinct fluvial environments. Our analysis shows that SVR outperforms the band ratio method by providing better root-mean-square error (RMSE) agreement and higher R-2 for both clear and turbid water. We also demonstrate an extension of the nonparametric properties of SVR to provide estimates of water turbidity from hyperspectral imagery and show that the approach is able to estimate turbidity with an RMSE of approximately 1.2 NTU when compared with independent turbidity measurements.
引用
收藏
页码:2165 / 2169
页数:5
相关论文
共 50 条
  • [41] Estimation of the regularization parameter for support vector regression
    Jordaan, EM
    Smits, GF
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 2192 - 2197
  • [42] Hybrid Sequence Networks for Unsupervised Water Properties Estimation From Hyperspectral Imagery
    Qi, Jiahao
    Xue, Wei
    Gong, Zhiqiang
    Zhang, Shaoquan
    Yao, Aihuan
    Zhong, Ping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3830 - 3845
  • [43] A support vector data description approach to target detection in hyperspectral imagery
    Sakla, Wesam A.
    Sakla, Adel A.
    Chan, Andrew
    AUTOMATIC TARGET RECOGNITION XIX, 2009, 7335
  • [44] Noise estimation algorithm based on relevance vector machine for hyperspectral imagery
    Wang, Xiaofei
    Hou, Chuanlong
    Yan, Qiujing
    Zhang, Junping
    Wang, Aihua
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2014, 43 (12): : 4159 - 4163
  • [45] Estimation of polarization state from hyperspectral imagery
    Schau, HC
    Jennette, BA
    Hall, G
    Soulon, R
    Torrey, C
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 470 - 479
  • [46] Estimation of Water Stress in Potato Plants Using Hyperspectral Imagery and Machine Learning Algorithms
    Martin Duarte-Carvajalino, Julio
    Alexander Silva-Arero, Elias
    Antonio Goez-Vinasco, Gerardo
    Marcela Torres-Delgado, Laura
    Duban Ocampo-Paez, Oscar
    Maria Castano-Marin, Angela
    HORTICULTURAE, 2021, 7 (07)
  • [47] Enhancing skeletal age estimation accuracy using support vector regression models
    Deng, Ying
    Gao, Xiaoyan
    Tu, Taotao
    LEGAL MEDICINE, 2024, 66
  • [48] Meteorology Visibility Estimation by Using Multi-Support Vector Regression Method
    Lo, Wai Lun
    Zhu, Meimei
    Fu, Hong
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (02) : 40 - 47
  • [49] Temperature Estimation of Permanent Magnet Synchronous Motors Using Support Vector Regression
    Jing, Hao
    Xiao, Dianxun
    Wang, Xinhao
    Chen, Zifeng
    Fang, Gaoliang
    Guo, Xiaoqiang
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [50] Digital terrain model height estimation using support vector machine regression
    Okwuashi, Onuwa
    Ndehedehe, Christopher
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2015, 111 (9-10)