Estimation of Water Depths and Turbidity From Hyperspectral Imagery Using Support Vector Regression

被引:38
|
作者
Pan, Zhigang [1 ]
Glennie, Craig [1 ]
Legleiter, Carl [2 ]
Overstreet, Brandon [2 ]
机构
[1] Univ Houston, Geosensing Syst Engn & Sci Dept, Houston, TX 77204 USA
[2] Univ Wyoming, Dept Geog, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
Bathymetry; hyperspectral; support vector regression (SVR); turbidity; BATHYMETRY; RETRIEVAL;
D O I
10.1109/LGRS.2015.2453636
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose and evaluate an empirical method for water depth determination from hyperspectral imagery when the benthic layer is visible using support vector regression (SVR). The implementation of the empirical method is presented, and its ability to estimate water depths is compared with a more commonly used band ratio method for two distinct fluvial environments. Our analysis shows that SVR outperforms the band ratio method by providing better root-mean-square error (RMSE) agreement and higher R-2 for both clear and turbid water. We also demonstrate an extension of the nonparametric properties of SVR to provide estimates of water turbidity from hyperspectral imagery and show that the approach is able to estimate turbidity with an RMSE of approximately 1.2 NTU when compared with independent turbidity measurements.
引用
收藏
页码:2165 / 2169
页数:5
相关论文
共 50 条
  • [31] Using tabu search to configure support vector regression for effort estimation
    A. Corazza
    S. Di Martino
    F. Ferrucci
    C. Gravino
    F. Sarro
    E. Mendes
    Empirical Software Engineering, 2013, 18 : 506 - 546
  • [32] Using tabu search to configure support vector regression for effort estimation
    Corazza, A.
    Di Martino, S.
    Ferrucci, F.
    Gravino, C.
    Sarro, F.
    Mendes, E.
    EMPIRICAL SOFTWARE ENGINEERING, 2013, 18 (03) : 506 - 546
  • [33] Mining capital cost estimation using Support Vector Regression (SVR)
    Nourali, Hamidreza
    Osanloo, Morteza
    RESOURCES POLICY, 2019, 62 : 527 - 540
  • [34] Spectral-Spatial Classification of Hyperspectral Imagery Using Support Vector and Fuzzy-MRF
    Chakravarty, Sumit
    Banerjee, Madhushri
    Chandel, Sonali
    INTELLIGENT, SECURE, AND DEPENDABLE SYSTEMS IN DISTRIBUTED AND CLOUD ENVIRONMENTS (ISDDC 2017), 2017, 10618 : 151 - 161
  • [35] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [36] Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression
    Ibitoye, Morufu Olusola
    Hamzaid, Nur Azah
    Wahab, Ahmad Khairi Abdul
    Hasnan, Nazirah
    Olatunji, Sunday Olusanya
    Davis, Glen M. O. A. M.
    SENSORS, 2016, 16 (07)
  • [37] Location estimation via support vector regression
    Wu, Zhi-Li
    Li, Chun-hung
    Ng, Joseph Kee-Yin
    Leung, Karl R. P. H.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2007, 6 (03) : 311 - 321
  • [38] Fuzzy support vector machine for regression estimation
    Sun, ZH
    Sun, YX
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3336 - 3341
  • [39] Optic flow estimation by support vector regression
    Colliez, Johan
    Dufrenois, Franck
    Hamad, Denis
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2006, 19 (07) : 761 - 768
  • [40] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2014, 29 : 1651 - 1665