Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides

被引:96
|
作者
Cui, Qirui [1 ,2 ]
Liang, Jinghua [1 ]
Shao, Ziji [1 ,4 ]
Cui, Ping [1 ,2 ]
Yang, Hongxin [1 ,3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Ningbo, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Hangzhou Dianzi Univ, Coll Elect & Informat, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SUPEREXCHANGE INTERACTION; ANISOTROPY; SKYRMIONS; DYNAMICS;
D O I
10.1103/PhysRevB.102.094425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using first-principles calculations and micromagnetic simulations, we systematically investigate the magnetic properties of two-dimensional Janus chromium dichalcogenides (CrXTe, X = S, Se) under strain. We find that the CrSTe monolayer has high Curie temperature (T-c) of 295 K and an out-of-plane magnetic anisotropy. The CrSeTe monolayer has large Dzyaloshinskii-Moriya interaction (DMI) which can host chiral Neel domain wall (DW), and under an external magnetic field, the skyrmion states can be induced. As tensile strain increases, ferromagnetic exchange coupling and perpendicular magnetic anisotropy of Janus CrXTe monolayers both increase significantly, and the magnitude of DMI is reduced, which results in the giant ferromagnetism enhancement. Interestingly, for CrSeTe monolayer, distinct spin textures from chiral DW to uniform ferromagnetic states are induced under tensile strain. Moreover, the diameter and density of skyrmions in CrSeTe can be tuned by the amplitude of external magnetic field and strain. These findings highlight that the Janus CrXTe monolayers as good candidates for spintronic nanodevices.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Topological spin textures of antiskyrmionic crystals in two-dimensional antiferromagnets
    Liu, Zhaosen
    Ian, Hou
    Liu, Yaowen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 561
  • [42] Electrical control of topological spin textures in two-dimensional multiferroics
    Jiang, Jiawei
    Li, Rui
    Mi, Wenbo
    NANOSCALE, 2021, 13 (48) : 20609 - 20614
  • [43] Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides
    Xia, Congxin
    Xiong, Wenqi
    Du, Juan
    Wang, Tianxing
    Peng, Yuting
    Li, Jingbo
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [44] Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
    Qian, Xiaofeng
    Liu, Junwei
    Fu, Liang
    Li, Ju
    SCIENCE, 2014, 346 (6215) : 1344 - 1347
  • [45] Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics
    Li, Shisheng
    Hong, Jinhua
    Gao, Bo
    Lin, Yung-Chang
    Lim, Hong En
    Lu, Xueyi
    Wu, Jing
    Liu, Song
    Tateyama, Yoshitaka
    Sakuma, Yoshiki
    Tsukagoshi, Kazuhito
    Suenaga, Kazu
    Taniguchi, Takaaki
    ADVANCED SCIENCE, 2021, 8 (11)
  • [46] Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides
    Sharma, Girish
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [47] Two-dimensional CoSe structures: Intrinsic magnetism, strain-tunable anisotropic valleys, magnetic Weyl point, and antiferromagnetic metal state
    Tai, Bo
    Wu, Weikang
    Feng, Xiaolong
    Jiao, Yalong
    Zhao, Jianzhou
    Lu, Yunhao
    Sheng, Xian-Lei
    Yang, Shengyuan A.
    PHYSICAL REVIEW B, 2020, 102 (22)
  • [48] Chiral spin liquid in two-dimensional XY helimagnets
    Sorokin, A. O.
    Syromyatnikov, A. V.
    PHYSICAL REVIEW B, 2012, 85 (17):
  • [49] Transverse Transport in Two-Dimensional Relativistic Systems with Nontrivial Spin Textures
    Bouaziz, Juba
    Ishida, Hiroshi
    Lounis, Samir
    Bluegel, Stefan
    PHYSICAL REVIEW LETTERS, 2021, 126 (14)
  • [50] Topological spin textures of antiskyrmionic crystals in two-dimensional magnetic monolayers
    Liu, Zhaosen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 539