Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides

被引:96
|
作者
Cui, Qirui [1 ,2 ]
Liang, Jinghua [1 ]
Shao, Ziji [1 ,4 ]
Cui, Ping [1 ,2 ]
Yang, Hongxin [1 ,3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Ningbo, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Hangzhou Dianzi Univ, Coll Elect & Informat, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; SUPEREXCHANGE INTERACTION; ANISOTROPY; SKYRMIONS; DYNAMICS;
D O I
10.1103/PhysRevB.102.094425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using first-principles calculations and micromagnetic simulations, we systematically investigate the magnetic properties of two-dimensional Janus chromium dichalcogenides (CrXTe, X = S, Se) under strain. We find that the CrSTe monolayer has high Curie temperature (T-c) of 295 K and an out-of-plane magnetic anisotropy. The CrSeTe monolayer has large Dzyaloshinskii-Moriya interaction (DMI) which can host chiral Neel domain wall (DW), and under an external magnetic field, the skyrmion states can be induced. As tensile strain increases, ferromagnetic exchange coupling and perpendicular magnetic anisotropy of Janus CrXTe monolayers both increase significantly, and the magnitude of DMI is reduced, which results in the giant ferromagnetism enhancement. Interestingly, for CrSeTe monolayer, distinct spin textures from chiral DW to uniform ferromagnetic states are induced under tensile strain. Moreover, the diameter and density of skyrmions in CrSeTe can be tuned by the amplitude of external magnetic field and strain. These findings highlight that the Janus CrXTe monolayers as good candidates for spintronic nanodevices.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Thickness- and strain-tunable electronic structures of two-dimensional Bi2O2Se
    Hu, Ce-Wen
    Yang, Yi
    Hou, Chunju
    Liang, Tong-Xiang
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 194
  • [32] Room-Temperature Ferromagnetism in Two-Dimensional Janus Titanium Chalcogenides
    Zhang Kai
    Wu Xiaojun
    ACTA CHIMICA SINICA, 2023, 81 (09) : 1142 - 1147
  • [33] Thickness-dependent and strain-tunable magnetism in two-dimensional van der Waals VSe2
    Ci, Wenjuan
    Yang, Huali
    Xue, Wuhong
    Yang, Ruilong
    Lv, Baohua
    Wang, Peng
    Li, Run-Wei
    Xu, Xiao-Hong
    NANO RESEARCH, 2022, 15 (08) : 7597 - 7603
  • [34] Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides
    Wang, Jun
    Shu, Haibo
    Zhao, Tianfeng
    Liang, Pei
    Wang, Ning
    Cao, Dan
    Chen, Xiaoshuang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (27) : 18571 - 18578
  • [35] Spin susceptibility of two-dimensional transition-metal dichalcogenides
    Hatami, H.
    Kernreiter, T.
    Zulicke, U.
    PHYSICAL REVIEW B, 2014, 90 (04)
  • [36] Two-dimensional Janus monolayers with tunable electronic and magnetic properties
    T. Mukherjee
    S. Kar
    S. J. Ray
    Journal of Materials Research, 2022, 37 : 3418 - 3427
  • [37] Two-dimensional Janus monolayers with tunable electronic and magnetic properties
    Mukherjee, T.
    Kar, S.
    Ray, S. J.
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (20) : 3418 - 3427
  • [38] Tunable magnetic properties of two-dimensional Janus NiClI monolayer
    Dai, Songli
    Tian, Zean
    Computational Materials Science, 2025, 246
  • [39] Strain-Tunable Photocatalytic Performance in Two-Dimensional Janus In2S2X (X=Se,Te) Monolayer as Photocatalyst for CO2 Reduction
    Chen, Zhengnan
    Chi, YuHua
    Ma, Hao
    Yuan, Saifei
    Hao, Chunlian
    Ren, Hao
    Zhao, Wen
    Zhu, HouYu
    Guo, Wenyue
    CHEMPHOTOCHEM, 2023, 7 (08)
  • [40] Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer
    Wang, Ya-ping
    Zhang, Chang-wen
    Ji, Wei-xiao
    Zhang, Run-wu
    Li, Ping
    Wang, Pei-ji
    Ren, Miao-juan
    Chen, Xin-lian
    Yuan, Min
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (05)