Algorithm for Increasing the Speed of Evolutionary Optimization and its Accuracy in Multi-objective Problems

被引:62
|
作者
Shokri, Ashkan [1 ]
Bozorg-Haddad, Omid [2 ]
Marino, Miguel A. [3 ,4 ,5 ]
机构
[1] Univ Tehran, Coll Agr & Nat Resources, Dept Irrigat & Reclamat, Tehran, Iran
[2] Univ Tehran, Coll Agr & Nat Resources, Fac Agr Engn & Technol, Dept Irrigat & Reclamat, Tehran, Iran
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[5] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA
关键词
NSGAII-ANN algorithm; Evolutionary optimization; Time-consuming simulation; Expensive simulation; OPERATION OPTIMIZATION; RESERVOIR OPERATION; WATER; DESIGN; DISCRETE;
D O I
10.1007/s11269-013-0285-4
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Optimization algorithms are important tools for the solution of combinatorial management problems. Nowadays, many of those problems are addressed by using evolutionary algorithms (EAs) that move toward a near-optimal solution by repetitive simulations. Sometimes, such extensive simulations are not possible or are costly and time-consuming. Thus, in this study a method based on artificial neural networks (ANN) is proposed to reduce the number of simulations required in EAs. Specifically, an ANN simulator is used to reduce the number of simulations by the main simulator. The ANN is trained and updated only for required areas in the decision space. Performance of the proposed method is examined by integrating it with the non-dominated sorting genetic algorithm (NSGAII) in multi-objective problems. In terms of density and optimality of the Pareto front, the hybrid NSGAII-ANN is able to extract the Pareto front with much less simulation time compared to the sole use of the NSGAII algorithm. The proposed NSGAII-ANN methodology was examined using three standard test problems (FON, KUR, and ZDT1) and one real-world problem. The latter addresses the operation of a reservoir with two objectives (meeting demand and flood control). Thus, based on this study, use of the NSGAII-ANN integrative algorithm in problems with time-consuming simulators reduces the required time for optimization up to 50 times. Results of the real-world problem, despite lower computational-time requirements, show a performance similar to that achieved in the aforementioned test problems.
引用
下载
收藏
页码:2231 / 2249
页数:19
相关论文
共 50 条
  • [41] Multi-objective evolutionary algorithm in ship route optimization
    Vettor, R.
    Guedes Soares, C.
    MARITIME TECHNOLOGY AND ENGINEERING, VOLS. 1 & 2, 2015, : 865 - 873
  • [42] A simple evolutionary algorithm for multi-objective optimization (SEAMO)
    Valenzuela, CL
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 717 - 722
  • [43] A new dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-An
    Wang, Yuping
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (08): : 2087 - 2096
  • [44] Parallel Dynamic Multi-Objective Optimization Evolutionary Algorithm
    Grid, Maroua
    Belaiche, Leila
    Kahloul, Laid
    Benharzallah, Saber
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 164 - 169
  • [45] The Research and Summary of Evolutionary Multi-objective Optimization Algorithm
    Xu Jingqi
    INTELLIGENCE COMPUTATION AND EVOLUTIONARY COMPUTATION, 2013, 180 : 505 - 512
  • [46] Multi-objective evolutionary algorithm for optimization of combustion processes
    Büche, D
    Stoll, P
    Koumoutsakos, P
    MANIPULATION AND CONTROL OF JETS IN CROSSFLOW, 2003, (439): : 157 - 169
  • [47] Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm
    Zhao An
    Lai Zhounian
    Wu Peng
    Cao Linlin
    Wu Dazhuan
    ENGINEERING OPTIMIZATION, 2016, 48 (07) : 1251 - 1274
  • [48] RESEARCH ON A MULTI-OBJECTIVE CONSTRAINED OPTIMIZATION EVOLUTIONARY ALGORITHM
    Xiu, Jiapeng
    He, Qun
    Yang, Zhengqiu
    Liu, Chen
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 282 - 286
  • [49] An Improved Adaptive Evolutionary Algorithm for Multi-objective Optimization
    Wang, Jianwei
    Zhang, Jianming
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1494 - +
  • [50] Evolutionary Rough Parallel Multi-Objective Optimization Algorithm
    Maulik, Ujjwal
    Sarkar, Anasua
    FUNDAMENTA INFORMATICAE, 2010, 99 (01) : 13 - 27