Multi-objective evolutionary algorithm for optimization of combustion processes

被引:0
|
作者
Büche, D [1 ]
Stoll, P [1 ]
Koumoutsakos, P [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Inst Computat Sci, CH-8092 Zurich, Switzerland
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work introduces a multi-objective evolutionary algorithm capable of handling noisy problems like experimental setups with a particular emphasis on robustness against unexpected measurements (outliers). The algorithm is based on the Strength Pareto Evolutionary Algorithm (SPEA) of Zitzler and Thiele and includes the new concepts of domination dependent lifetime, re-evaluation of solutions and modifications in the update of the archive. Several tests on prototypical functions underline the improvements in convergence speed and robustness of the extended algorithm. The proposed algorithm is implemented to the Pareto optimization of the combustion process of a stationary gas turbine in an industrial setup. The free parameters of the optimization are the fuel injection rates through transverse jets. The Pareto front is constructed for the objectives of minimization of NOz emissions and reduction of the pressure fluctuations (pulsation) of the flame. Both objectives are conflicting affecting the environment and the lifetime of the turbine, respectively. The optimization leads a Pareto front corresponding to reduced emissions and pulsation of the burner. The physical implications of the solutions are discussed and the algorithm is evaluated.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 50 条
  • [1] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [2] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [3] Evolutionary multi-objective optimization of business processes
    Tiwari, Ashutosh
    Vergidis, Kostas
    Majeed, Basim
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 3076 - +
  • [4] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [5] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [6] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [7] Dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-an
    Wang, Yuping
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 456 - +
  • [8] Dynamical multi-objective optimization evolutionary algorithm
    Xiong, SW
    Li, F
    Wang, W
    Feng, C
    THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 418 - 421
  • [9] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [10] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98