SYMPLECTIC STRUCTURES AND HAMILTONIAN FUNCTIONS CORRESPONDING TO A SYSTEM OF ODES

被引:7
|
作者
Torres Del Castillo, G. F. [1 ]
Galindo-Linares, E. [2 ]
机构
[1] Univ Autonoma Puebla, Dept Fis Matemat, Inst Ciencias, Puebla 72570, Mexico
[2] Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla 72001, Mexico
关键词
Hamiltonians; symplectic structures;
D O I
10.1142/S021988781220023X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that, given a system of 2n first-order (or of n second-order) ODEs, there exists an infinite number of symplectic structures and Hamiltonian functions such that the corresponding Hamilton equations are locally equivalent to the given system of equations, without restrictions analogous to the Helmholtz conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Constructing the Hamiltonian from the Behaviour of a Dynamical System by Proper Symplectic Decomposition
    Shirafkan, Nima
    Gosselet, Pierre
    Bamer, Franz
    Oueslati, Abdelbacet
    Markert, Bernd
    de Saxce, Gery
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 439 - 447
  • [32] The spectrum of a linear Hamiltonian system and symplectic geometry of a complex Artin space
    Kozov, AVV
    DOKLADY MATHEMATICS, 2003, 68 (03) : 385 - 387
  • [33] PHYSICAL INTERPRETATION OF THE SYMPLECTIC ORTHOGONALITY OF THE EIGENSOLUTIONS OF A HAMILTONIAN OR SYMPLECTIC MATRIX
    ZHONG, WX
    WILLIAMS, FW
    COMPUTERS & STRUCTURES, 1993, 49 (04) : 749 - 750
  • [34] Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
    Kong, Xin-Lei
    Wu, Hui-Bin
    Mei, Feng-Xiang
    CHINESE PHYSICS B, 2016, 25 (01)
  • [35] Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures
    Martínez-Merino, AA
    Montesinos, M
    ANNALS OF PHYSICS, 2006, 321 (02) : 318 - 330
  • [36] Hamiltonian Structures of Reductions of the Benney System
    Gibbons, John
    Lorenzoni, Paolo
    Raimondo, Andrea
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) : 291 - 322
  • [37] Hamiltonian Structures of Reductions of the Benney System
    John Gibbons
    Paolo Lorenzoni
    Andrea Raimondo
    Communications in Mathematical Physics, 2009, 287 : 291 - 322
  • [38] Functional realization of some elliptic Hamiltonian structures and bosonization of the corresponding quantum algebras
    Feigin, BL
    Odesskii, AV
    INTEGRABLE STRUCTURES OF EXACTLY SOLVABLE TWO-DIMENSIONAL MODELS OF QUANTUM FIELD THEORY, 2001, 35 : 109 - 122
  • [39] ON LOCAL HAMILTONIAN STRUCTURES OF BENNEY SYSTEM
    PAVLOV, MV
    DOKLADY AKADEMII NAUK, 1994, 338 (01) : 33 - 34
  • [40] Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator
    Cariñena, JF
    Marmo, G
    Rañada, MF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (47): : L679 - L686