Hamiltonian Structures of Reductions of the Benney System

被引:8
|
作者
Gibbons, John [1 ]
Lorenzoni, Paolo [2 ]
Raimondo, Andrea [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
HYDRODYNAMIC TYPE; POISSON BRACKETS; EQUATIONS;
D O I
10.1007/s00220-008-0686-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to construct the Hamiltonian structures of any reduction of the Benney chain (dispersionless KP). The construction follows the scheme suggested by Ferapontov, leading in general to nonlocal Hamiltonian structures. In some special cases these reduce to local structures. All the geometric objects which define the Poisson bracket, the metric, connection and Riemann curvature, are obtained explicitly, in terms of the n-parameter family of conformal maps associated with the reduction.
引用
收藏
页码:291 / 322
页数:32
相关论文
共 50 条
  • [1] Hamiltonian Structures of Reductions of the Benney System
    John Gibbons
    Paolo Lorenzoni
    Andrea Raimondo
    Communications in Mathematical Physics, 2009, 287 : 291 - 322
  • [2] ON LOCAL HAMILTONIAN STRUCTURES OF BENNEY SYSTEM
    PAVLOV, MV
    DOKLADY AKADEMII NAUK, 1994, 338 (01) : 33 - 34
  • [3] HAMILTONIAN STRUCTURES OF THE MELNIKOV SYSTEM AND ITS REDUCTIONS
    OEVEL, W
    SIDORENKO, J
    STRAMPP, W
    INVERSE PROBLEMS, 1993, 9 (06) : 737 - 747
  • [4] Reductions of the Benney equations
    Gibbons, J
    Tsarev, SP
    PHYSICS LETTERS A, 1996, 211 (01) : 19 - 24
  • [5] Some reductions from a Lax integrable system and their Hamiltonian structures
    Wang, Xinzeng
    Dong, Huanhe
    Li, Yuxia
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10032 - 10039
  • [6] Conformal maps and reductions of the Benney equations
    Gibbons, J
    Tsarev, SP
    PHYSICS LETTERS A, 1999, 258 (4-6) : 263 - 271
  • [7] Conformal maps and reductions of the Benney equations
    Gibbons, John
    Tsarev, Serguei P.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (4-6): : 263 - 271
  • [8] BI-HAMILTONIAN STRUCTURES OF D-BOUSSINESQ AND BENNEY-LAX EQUATIONS
    GUMRAL, H
    NUTKU, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (01): : 193 - 200
  • [9] Higher genus hyperelliptic reductions of the Benney equations
    Baldwin, S
    Gibbons, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (20): : 5341 - 5354
  • [10] The initial value problem for reductions of the Benney equations
    Yu, L
    Gibbons, J
    INVERSE PROBLEMS, 2000, 16 (03) : 605 - 618