Causal inference for complex longitudinal data: The continuous case

被引:0
|
作者
Gill, RD
Robins, JM
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
来源
ANNALS OF STATISTICS | 2001年 / 29卷 / 06期
关键词
causality; counterfactuals; longitudinal data; observational studies;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend Robins' theory of causal inference for complex longitudinal data to the case of continuously varying as opposed to discrete covariates and treatments. In particular we establish versions of the key results of the discrete theory: the g-computation formula and a collection of powerful characterizations of the g-null hypothesis of no treatment effect. This is accomplished under natural continuity hypotheses concerning the conditional distributions of the outcome variable and of the covariates given the past, We also show that our assumptions concerning counterfactual variables place no restriction on the joint distribution of the observed variables: thus in a precise sense, these assumptions are "for free," or if you prefer, harmless.
引用
收藏
页码:1785 / 1811
页数:27
相关论文
共 50 条
  • [31] Causal Inference for Social Network Data
    Ogburn, Elizabeth L.
    Sofrygin, Oleg
    Diaz, Ivan
    van der Laan, Mark J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 597 - 611
  • [32] Causal Inference with Selectively Deconfounded Data
    Gan, Kyra
    Li, Andrew A.
    Lipton, Zachary C.
    Tayur, Sridhar
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [33] Accurate Causal Inference on Discrete Data
    Budhathoki, Kailash
    Vreeken, Junes
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 881 - 886
  • [34] MDL for Causal Inference on Discrete Data
    Budhathoki, Kailash
    Vreeken, Jilles
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 751 - 756
  • [35] Data-Rich Causal Inference
    Shah A.
    Performance Evaluation Review, 2024, 51 (03): : 54 - 57
  • [36] Causal Inference: A Missing Data Perspective
    Ding, Peng
    Li, Fan
    STATISTICAL SCIENCE, 2018, 33 (02) : 214 - 237
  • [37] Causal Inference from Network Data
    Zheleva, Elena
    Arbour, David
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 4096 - 4097
  • [38] Collaborative causal inference on distributed data
    Kawamata, Yuji
    Motai, Ryoki
    Okada, Yukihiko
    Imakura, Akira
    Sakurai, Tetsuya
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 244
  • [39] Causal inference and data fusion in econometrics
    Huenermund, Paul
    Bareinboim, Elias
    ECONOMETRICS JOURNAL, 2023,
  • [40] Impact of discretization of the timeline for longitudinal causal inference methods
    Ferreira Guerra, Steve
    Schnitzer, Mireille E.
    Forget, Amelie
    Blais, Lucie
    STATISTICS IN MEDICINE, 2020, 39 (27) : 4069 - 4085