Causal inference for complex longitudinal data: The continuous case

被引:0
|
作者
Gill, RD
Robins, JM
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
来源
ANNALS OF STATISTICS | 2001年 / 29卷 / 06期
关键词
causality; counterfactuals; longitudinal data; observational studies;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend Robins' theory of causal inference for complex longitudinal data to the case of continuously varying as opposed to discrete covariates and treatments. In particular we establish versions of the key results of the discrete theory: the g-computation formula and a collection of powerful characterizations of the g-null hypothesis of no treatment effect. This is accomplished under natural continuity hypotheses concerning the conditional distributions of the outcome variable and of the covariates given the past, We also show that our assumptions concerning counterfactual variables place no restriction on the joint distribution of the observed variables: thus in a precise sense, these assumptions are "for free," or if you prefer, harmless.
引用
收藏
页码:1785 / 1811
页数:27
相关论文
共 50 条
  • [21] The Unfulfilled Promise of Longitudinal Designs for Causal Inference
    Loh, Wen Wei
    Ren, Dongning
    COLLABRA-PSYCHOLOGY, 2023, 9 (01)
  • [22] Causal inference with marginal structural modeling for longitudinal data in laparoscopic surgery: A technical note
    Zhang, Zhongheng
    Jin, Peng
    Feng, Menglin
    Yang, Jie
    Huang, Jiajie
    Chen, Lin
    Xu, Ping
    Sun, Jian
    Hu, Caibao
    Hong, Yucai
    LAPAROSCOPIC ENDOSCOPIC AND ROBOTIC SURGERY, 2022, 5 (04): : 146 - 152
  • [23] Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
    Rima Izem
    Robert McCarter
    Orphanet Journal of Rare Diseases, 16
  • [24] Causal inference under over-simplified longitudinal causal models
    Etievant, Lola
    Viallon, Vivian
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2022, 18 (02): : 421 - 437
  • [25] Randomized and non-randomized designs for causal inference with longitudinal data in rare disorders
    Izem, Rima
    McCarter, Robert
    ORPHANET JOURNAL OF RARE DISEASES, 2021, 16 (01)
  • [26] Independence Weights for Causal Inference with Continuous Treatments
    Huling, Jared D.
    Greifer, Noah
    Chen, Guanhua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1657 - 1670
  • [27] Causal inference of latent classes in complex survey data with the estimating equation framework
    Kang, Joseph
    He, Yulei
    Hong, Jaeyoung
    Esie, Precious
    Bernstein, Kyle T.
    STATISTICS IN MEDICINE, 2020, 39 (03) : 207 - 219
  • [28] Inference for longitudinal data from complex sampling surveys: An approach based on quadratic inference functions
    Dumitrescu, Laura
    Qian, Wei
    Rao, J. N. K.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (01) : 246 - 274
  • [29] Causal inference from observational data
    Listl, Stefan
    Juerges, Hendrik
    Watt, Richard G.
    COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY, 2016, 44 (05) : 409 - 415
  • [30] Data Science, Design, and Causal Inference
    Robert W. Platt
    Current Epidemiology Reports, 2017, 4 (4) : 269 - 270