A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors

被引:77
|
作者
Qi, Jun [1 ,2 ]
Yang, Po [1 ,2 ]
Hanneghan, Martin [2 ]
Tang, Stephen [2 ]
Zhou, Bo [2 ]
机构
[1] Yunnan Univ, Sch Software, Kunming 650504, Yunnan, Peoples R China
[2] Liverpool John Moores Univ, Dept Comp Sci, Liverpool L3 3AF, Merseyside, England
关键词
Free weight training; Internet of Things; physical activity (PA) recognition; wearable sensors; TRIAXIAL ACCELEROMETER; INERTIAL SENSORS; EXERCISE; FITNESS;
D O I
10.1109/JIOT.2018.2846359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the many beneficial effects on physical and mental health and strong association with many fitness and rehabilitation programs, physical activity (PA) recognition has been considered as a key paradigm for Internet of Things healthcare. Traditional PA recognition techniques focus on repeated aerobic exercises or stationary PA. As a crucial indicator in human health, it covers a range of bodily movement from aerobics to anaerobic that may all bring health benefits. However, existing PA recognition approaches are mostly designed for specific scenarios and often lack extensibility for application in other areas, thereby limiting their usefulness. In this paper, we attempt to detect more gym PAs (GPAs) in addition to traditional PA using acceleration, A two layer recognition framework is proposed that can classify aerobic, sedentary, and free weight activities, count repetitions and sets for the free weight exercises, and in the meantime, measure quantities of repetitions and sets for free weight activities. In the first layer, a one-class support vector machine is applied to coarsely classify free weight and nonfree weight activities. In the second layer, a neural network is utilized for aerobic and sedentary activities recognition; a hidden Markov model is to provide a further classification in free weight activities. The performance of the framework was tested on ten healthy subjects (age: 30 +/- 5; BMI: 25 +/- 5.5 kg/m(2); and body fat: 20.5 +/- 5.4), and compared with some typical classifiers. The results indicate the proposed framework has better performance in recognizing and measuring GPAs than other approaches. The potential of this framework can be extended in supporting more types of PA recognition in complex applications.
引用
收藏
页码:1384 / 1393
页数:10
相关论文
共 50 条
  • [41] Wearable activity sensors: Using physical activity to predict length of hospital stay?
    Abeles, A.
    Kwasnicki, R. M.
    Geoghegan, L.
    Pratt, P.
    Darzi, A.
    BRITISH JOURNAL OF SURGERY, 2017, 104 : 53 - 53
  • [42] Orientation Independent Activity/Gesture Recognition Using Wearable Motion Sensors
    Wu, Jian
    Jafari, Roozbeh
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02): : 1427 - 1437
  • [43] Motion Primitive Forests for Human Activity Recognition Using Wearable Sensors
    Nguyen Ngoc Diep
    Cuong Pham
    Tu Minh Phuong
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 340 - 353
  • [44] Human Daily Activity Recognition With Sparse Representation Using Wearable Sensors
    Zhang, Mi
    Sawchuk, Alexander A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (03) : 553 - 560
  • [45] A Deep Survey on Human Activity Recognition Using Mobile and Wearable Sensors
    Jameer S.
    Syed H.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [46] Deep Learning for Laying Hen Activity Recognition Using Wearable Sensors
    Shahbazi, Mohammad
    Mohammadi, Kamyar
    Derakhshani, Sayed M.
    Koerkamp, Peter W. G. Groot
    AGRICULTURE-BASEL, 2023, 13 (03):
  • [47] Robust Human Activity Recognition Using Lesser Number of Wearable Sensors
    Wang, Di
    Candinegara, Edwin
    Hou, Junhui
    Tan, Ah-Hwee
    Miao, Chunyan
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 290 - 295
  • [48] Towards Physical Activity Recognition Using Smartphone Sensors
    Shoaib, Muhammad
    Scholten, Hans
    Havinga, P. J. M.
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON AND 10TH INTERNATIONAL CONFERENCE ON AUTONOMIC AND TRUSTED COMPUTING (UIC/ATC) UBIQUITOUS INTELLIGENCE AND COMPUTING, 2013, : 80 - 87
  • [49] Human Activity Recognition Using Wearable Sensors Based on Image Classification
    Zebhi, Saeedeh
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12117 - 12126
  • [50] Human Physical Activity Recognition Using Smartphone Sensors
    Voicu, Robert-Andrei
    Dobre, Ciprian
    Bajenaru, Lidia
    Ciobanu, Radu-Ioan
    SENSORS, 2019, 19 (03)