Human Physical Activity Recognition Using Smartphone Sensors

被引:90
|
作者
Voicu, Robert-Andrei [1 ]
Dobre, Ciprian [2 ]
Bajenaru, Lidia [2 ]
Ciobanu, Radu-Ioan [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Automat Control & Comp, Bucharest 060042, Romania
[2] Natl Inst Res & Dev Informat, Bucharest 011455, Romania
关键词
activity recognition; machine learning; smartphones; ambient assisted living;
D O I
10.3390/s19030458
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Because the number of elderly people is predicted to increase quickly in the upcoming years, "aging in place" (which refers to living at home regardless of age and other factors) is becoming an important topic in the area of ambient assisted living. Therefore, in this paper, we propose a human physical activity recognition system based on data collected from smartphone sensors. The proposed approach implies developing a classifier using three sensors available on a smartphone: accelerometer, gyroscope, and gravity sensor. We have chosen to implement our solution on mobile phones because they are ubiquitous and do not require the subjects to carry additional sensors that might impede their activities. For our proposal, we target walking, running, sitting, standing, ascending, and descending stairs. We evaluate the solution against two datasets (an internal one collected by us and an external one) with great effect. Results show good accuracy for recognizing all six activities, with especially good results obtained for walking, running, sitting, and standing. The system is fully implemented on a mobile device as an Android application.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Human Activity Recognition Using Smartphone Sensors
    Bugdol, Marcin D.
    Mitas, Andrzej W.
    Grzegorzek, Marcin
    Meyer, Robert
    Wilhelm, Christoph
    INFORMATION TECHNOLOGIES IN MEDICINE (ITIB 2016), VOL 2, 2016, 472 : 41 - 47
  • [2] Towards Physical Activity Recognition Using Smartphone Sensors
    Shoaib, Muhammad
    Scholten, Hans
    Havinga, P. J. M.
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON AND 10TH INTERNATIONAL CONFERENCE ON AUTONOMIC AND TRUSTED COMPUTING (UIC/ATC) UBIQUITOUS INTELLIGENCE AND COMPUTING, 2013, : 80 - 87
  • [3] Unsupervised learning for human activity recognition using smartphone sensors
    Kwon, Yongjin
    Kang, Kyuchang
    Bae, Changseok
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6067 - 6074
  • [4] Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
    Lima, Wesllen Sousa
    Souto, Eduardo
    El-Khatib, Khalil
    Jalali, Roozbeh
    Gama, Joao
    SENSORS, 2019, 19 (14)
  • [5] Activity Recognition Using Smartphone Sensors
    Anjum, Alvina
    Ilyas, Muhammad U.
    2013 IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE (CCNC), 2013, : 914 - 919
  • [6] Human-Activity Recognition with Smartphone Sensors
    Ilisei, Danut
    Suciu, Dan Mircea
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS, OTM 2019, 2020, 11878 : 179 - 188
  • [7] Physical Activity Recognition from Smartphone Embedded Sensors
    Prudencio, Joao
    Aguiar, Ana
    Lucani, Daniel
    PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2013, 2013, 7887 : 863 - 872
  • [8] Fusion of Smartphone Motion Sensors for Physical Activity Recognition
    Shoaib, Muhammad
    Bosch, Stephan
    Incel, Ozlem Durmaz
    Scholten, Hans
    Havinga, Paul J. M.
    SENSORS, 2014, 14 (06) : 10146 - 10176
  • [9] Physical Human Activity Recognition Using Wearable Sensors
    Attal, Ferhat
    Mohammed, Samer
    Dedabrishvili, Mariam
    Chamroukhi, Faicel
    Oukhellou, Latifa
    Amirat, Yacine
    SENSORS, 2015, 15 (12) : 31314 - 31338
  • [10] Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors
    Moreira, Dinis
    Barandas, Marilia
    Rocha, Tiago
    Alves, Pedro
    Santos, Ricardo
    Leonardo, Ricardo
    Vieira, Pedro
    Gamboa, Hugo
    SENSORS, 2021, 21 (18)