Abelian and non-abelian second cohomologies of quantized enveloping algebras

被引:37
|
作者
Masuoka, Akira [1 ]
机构
[1] Univ Tsukuba, Inst Math, Tsukuba, Ibaraki 3058571, Japan
关键词
Hopf algebra; quantized enveloping algebra; cleft extension; the second cohomology; cocycle deformation;
D O I
10.1016/j.jalgebra.2008.03.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of pointed Hopf algebras including the quantized enveloping algebras, we discuss cleft extensions, cocycle deformations and the second cohomology. We present such a non-standard method of computing the abelian second cohomology that derives information from the non-abelian second cohomology classifying cleft extensions. As a sample computation, a quantum analogue of Whitehead's second lemma for Lie-algebra cohomology is proved. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 47
页数:47
相关论文
共 50 条
  • [41] Josephson junction of non-Abelian superconductors and non-Abelian Josephson vortices
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2015, 899 : 78 - 90
  • [42] Non-abelian cohomology of abelian Anosov actions
    Katok, A
    Nitica, V
    Török, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 259 - 288
  • [43] Note on Schwinger mechanism and a non-Abelian instability in a non-Abelian plasma
    Nair, V. P.
    Yelnikov, Alexandr
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [44] COHOMOLOGIES OF CERTAIN LIE-ALGEBRAS WITH AN ABELIAN IDEAL
    BAKHTURIN, YA
    PAGON, D
    RUSSIAN MATHEMATICAL SURVEYS, 1993, 48 (03) : 181 - 217
  • [45] PROJECTIVITIES BETWEEN ABELIAN AND NON-ABELIAN GROUPS
    MAINARDIS, M
    ARCHIV DER MATHEMATIK, 1991, 57 (04) : 332 - 338
  • [46] CHAOS IN ABELIAN AND NON-ABELIAN HIGGS SYSTEMS
    DEY, B
    KUMAR, CN
    SEN, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10): : 1755 - 1772
  • [47] Vortons with Abelian and non-Abelian currents and their stability
    Gianni Tallarita
    Adam Peterson
    Stefano Bolognesi
    Peter Bedford
    The European Physical Journal C, 2020, 80
  • [48] Vortons with Abelian and non-Abelian currents and their stability
    Tallarita, Gianni Y.
    Peterson, Adam
    Bolognesi, Stefano
    Bedford, Peter
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (01):
  • [49] Degeneracy between Abelian and non-Abelian strings
    Monin, Sergey
    Shifman, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (18):
  • [50] Exact Abelian and Non-Abelian Geometric Phases
    Soo, Chopin
    Lin, Huei-Chen
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 85 - 101