LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters

被引:531
|
作者
Kuhner, MK [1 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
关键词
D O I
10.1093/bioinformatics/btk051
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a Markov chain Monte Carlo coalescent genealogy sampler, LAMARC 2.0, which estimates population genetic parameters from genetic data. LAMARC can co-estimate subpopulation Theta = 4N(e)mu, immigration rates, subpopulation exponential growth rates and overall recombination rate, or a user-specified subset of these parameters. It can perform either maximum-likelihood or Bayesian analysis, and accomodates nucleotide sequence, SNP, microsatellite or elecrophoretic data, with resolved or unresolved haplotypes. It is available as portable source code and executables for all three major platforms.
引用
收藏
页码:768 / 770
页数:3
相关论文
共 50 条
  • [1] MAXIMUM-LIKELIHOOD-ESTIMATION OF POPULATION PARAMETERS
    FU, YX
    LI, WH
    [J]. GENETICS, 1993, 134 (04) : 1261 - 1270
  • [2] Comparing likelihood and Bayesian coalescent estimation of population parameters
    Kuhner, Mary K.
    Smith, Lucian P.
    [J]. GENETICS, 2007, 175 (01) : 155 - 165
  • [3] Comparison of Bayesian and maximum-likelihood inference of population genetic parameters
    Beerli, P
    [J]. BIOINFORMATICS, 2006, 22 (03) : 341 - 345
  • [4] Catch-effort maximum likelihood estimation of important population parameters
    Gould, WR
    Pollock, KH
    [J]. CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 1997, 54 (04) : 890 - 897
  • [5] Bayesian and maximum likelihood estimation of genetic maps
    York, TL
    Durrett, RT
    Tanksley, S
    Nielsen, R
    [J]. GENETICS RESEARCH, 2005, 85 (02) : 159 - 168
  • [6] MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION OF TRANSITION PROBABILITIES
    LEE, TC
    JUDGE, GG
    ZELLNER, A
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1968, 63 (324) : 1162 - &
  • [7] Maximum Likelihood Estimation of ADC Parameters
    Balogh, Laszlo
    Kollar, Istvan
    Sarhegyi, Attila
    [J]. 2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [8] MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERS
    Vidal, Ana Fernandez
    Pereyra, Marcelo
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1742 - 1746
  • [9] Learning and Inferences of the Bayesian Network with Maximum Likelihood Parameters
    Zhang, JiaDong
    Yue, Kun
    Lin, WeiYi
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2008, 5139 : 391 - 399
  • [10] WHEN IS MAXIMUM-LIKELIHOOD ESTIMATION OK FOR A BAYESIAN
    GOOD, IJ
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1982, 15 (01) : 75 - 77