Maximum Likelihood Estimation of ADC Parameters

被引:0
|
作者
Balogh, Laszlo [1 ]
Kollar, Istvan [1 ]
Sarhegyi, Attila [2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Measurement & Informat Syst, Budapest, Hungary
[2] Cypress Semicond Corp, San Jose, CA 95134 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dynamic testing of analog-digital converters (ADC) is a complex task. A possible approach is using a sine wave because it can be generated with high precision. However, in the sine wave fitting method for the test of ADC's, all the available information is extracted from the measured data. Therefore, the estimated ADC parameters (ENOB, linearity errors) are not always accurate enough, and not detailed information is gained about the nonlinearity of the ADC. Generally, maximum likelihood (ML) estimation is a powerful method for the estimation of unknown parameters. However, currently it is not used for the processing of such data, because of the difficulties of formulating it, furthermore because of the numerically demanding task of the minimization of the ML cost function [9]. We have succeeded in formulating the maximum likelihood function for a sinewave excitation, and in minimizing it. The number of parameters is frightening (all comparison levels of the ADC plus parameters of the sinewave plus variance of an additive input noise), but proper handling allows to determine the best values based on the data. The proper definition of the ML function and formulation of the numerical method are presented, with results using simulation and measurement data. To our knowledge, this is the first case to solve the full maximum likelihood problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An Efficient Approximation for Maximum Likelihood Estimation of ADC Parameters
    Sarhegyi, Attila
    Balogh, Laszlo
    Kollar, Istvan
    [J]. 2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2656 - 2661
  • [2] Maximum Likelihood Estimation-Based SAR ADC
    Jayaraj, Akshay
    Chandrasekaran, Sanjeev Tannirkulam
    Ganesh, Archana
    Banerjee, Imon
    Sanyal, Arindam
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2019, 66 (08) : 1311 - 1315
  • [3] MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERS
    Vidal, Ana Fernandez
    Pereyra, Marcelo
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1742 - 1746
  • [4] MAXIMUM LIKELIHOOD ESTIMATION OF SURVIVAL CURVE PARAMETERS
    FROME, EL
    BEAUCHAMP, JJ
    [J]. BIOMETRICS, 1968, 24 (03) : 595 - +
  • [5] MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN RENEWAL MODELS
    BASAWA, IV
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 2191 - &
  • [6] Maximum likelihood estimation of link function parameters
    Kaiser, MS
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (01) : 79 - 87
  • [7] Maximum Likelihood Estimation for Learning Populations of Parameters
    Vinayak, Ramya Korlakai
    Kong, Weihao
    Valiant, Gregory
    Kakade, Sham
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [8] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    [J]. MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [9] Maximum likelihood estimation of ordered multinomial parameters
    Jewell, NP
    Kalbfleisch, JD
    [J]. BIOSTATISTICS, 2004, 5 (02) : 291 - 306
  • [10] MAXIMUM LIKELIHOOD ESTIMATION OF SEISMIC SIGNAL PARAMETERS
    URSIN, B
    [J]. GEOPHYSICS, 1977, 42 (07) : 1545 - 1545