Learning and Inferences of the Bayesian Network with Maximum Likelihood Parameters

被引:0
|
作者
Zhang, JiaDong [1 ]
Yue, Kun [1 ]
Lin, WeiYi [1 ]
机构
[1] Yunnan Univ, Dept Comp Sci & Engn, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
关键词
Bayesian network; Inference; Maximum likelihood hypothesis; Support vector machine; Sigmoid;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real applications established on Bayesian networks (BNs), it is necessary to make inference for arbitrary evidence even it is not contained in existing conditional probability tables (CPTs). Aiming at this problem, in this paper, we discuss the learning and inferences of the BN with maximum likelihood parameters that replace the CPTs. We focus on the learning of the maximum likelihood parameters and give the corresponding methods for 2 kinds of BN inferences: forward inferences and backward inferences. Furthermore, we give the approximate inference method of BNs with maximum likelihood hypotheses. Premilinary experiments show the feasibility of our proposed methods.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条
  • [1] Augmenting learning function to Bayesian network inferences with maximum likelihood parameters
    Liu, Weiyi
    Yue, Kun
    Zhang, JiaDong
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3497 - 3504
  • [2] Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures
    Silander, Tomi
    Leppa-aho, Janne
    Jaasaari, Elias
    Roos, Teemu
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [3] Maximum Likelihood Estimation for Learning Populations of Parameters
    Vinayak, Ramya Korlakai
    Kong, Weihao
    Valiant, Gregory
    Kakade, Sham
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters
    Kuhner, MK
    [J]. BIOINFORMATICS, 2006, 22 (06) : 768 - 770
  • [6] APPLICATIONS OF LIKELIHOOD RATIO ORDER IN BAYESIAN INFERENCES
    Huang, Kai
    Mi, Jie
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2020, 34 (01) : 1 - 13
  • [7] Online Learning of Bayesian Network Parameters
    Liu, Jinzhong
    Liao, Qin
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 267 - 271
  • [8] Constrained Maximum Likelihood Learning of Bayesian Networks for Facial Action Recognition
    de Campos, Cassio P.
    Tong, Yan
    Ji, Qiang
    [J]. COMPUTER VISION - ECCV 2008, PT III, PROCEEDINGS, 2008, 5304 : 168 - +
  • [9] INFERENCES FOR CAUCHY DISTRIBUTION BASED ON MAXIMUM LIKELIHOOD ESTIMATORS
    HAAS, G
    BAIN, L
    ANTLE, C
    [J]. BIOMETRIKA, 1970, 57 (02) : 403 - &
  • [10] MAXIMUM MARGIN STRUCTURE LEARNING OF BAYESIAN NETWORK CLASSIFIERS
    Pernkopf, Franz
    Wohlmayr, Michael
    Muecke, Manfred
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2076 - 2079