Learning and Inferences of the Bayesian Network with Maximum Likelihood Parameters

被引:0
|
作者
Zhang, JiaDong [1 ]
Yue, Kun [1 ]
Lin, WeiYi [1 ]
机构
[1] Yunnan Univ, Dept Comp Sci & Engn, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
关键词
Bayesian network; Inference; Maximum likelihood hypothesis; Support vector machine; Sigmoid;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In real applications established on Bayesian networks (BNs), it is necessary to make inference for arbitrary evidence even it is not contained in existing conditional probability tables (CPTs). Aiming at this problem, in this paper, we discuss the learning and inferences of the BN with maximum likelihood parameters that replace the CPTs. We focus on the learning of the maximum likelihood parameters and give the corresponding methods for 2 kinds of BN inferences: forward inferences and backward inferences. Furthermore, we give the approximate inference method of BNs with maximum likelihood hypotheses. Premilinary experiments show the feasibility of our proposed methods.
引用
收藏
页码:391 / 399
页数:9
相关论文
共 50 条
  • [31] MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERS
    Vidal, Ana Fernandez
    Pereyra, Marcelo
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1742 - 1746
  • [32] Discriminative learning of bayesian network parameters by differential evolution
    Platas-Lopez, Alejandro
    Mezura-Montes, Efren
    Cruz-Ramirez, Nicandro
    Guerra-Hernandez, Alejandro
    [J]. APPLIED MATHEMATICAL MODELLING, 2021, 93 : 244 - 256
  • [33] Learning Bayesian network parameters under equivalence constraints
    Yao, Tiansheng
    Choi, Arthur
    Darwiche, Adnan
    [J]. ARTIFICIAL INTELLIGENCE, 2017, 244 : 239 - 257
  • [34] MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS
    BRUNK, HD
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (01): : 152 - 152
  • [35] Density estimation and nonparametric inferences using maximum likelihood weighted kernels
    Huang, Alan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) : 561 - 571
  • [36] Scalable Bayesian Network Structure Learning via Maximum Acyclic Subgraph
    Gillot, Pierre
    Parviainen, Pekka
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 209 - 220
  • [37] An Efficient Maximum Likelihood Method for Direction-of-Arrival Estimation via Sparse Bayesian Learning
    Liu, Zhang-Meng
    Huang, Zhi-Tao
    Zhou, Yi-Yu
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (10) : 3607 - 3617
  • [38] Maximum likelihood and Bayesian estimators for the double Poisson distribution
    Aragon D.C.
    Achcar J.A.
    Martinez E.Z.
    [J]. Journal of Statistical Theory and Practice, 2018, 12 (4) : 886 - 911
  • [39] Bayesian and Maximum Likelihood Analyses of Rotifer–Acanthocephalan Relationships
    David B. Mark Welch
    [J]. Hydrobiologia, 2005, 546 : 47 - 54
  • [40] Maximum likelihood for Bayesian estimator based on α-stable for image
    Huang, X
    Madoc, AC
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 709 - 712