Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space

被引:12
|
作者
Viet-An Nguyen [1 ,2 ]
Boyd-Graber, Jordan [2 ,3 ]
Altschul, Stephen F. [4 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[2] Univ Maryland, UMIACS, College Pk, MD 20742 USA
[3] Univ Maryland, iSch, College Pk, MD 20742 USA
[4] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
alignment; computational molecular biology; dynamic programming; multiple alignment; sequence analysis;
D O I
10.1089/cmb.2012.0244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Dirichlet process is used to model probability distributions that are mixtures of an unknown number of components. Amino acid frequencies at homologous positions within related proteins have been fruitfully modeled by Dirichlet mixtures, and we use the Dirichlet process to derive such mixtures with an unbounded number of components. This application of the method requires several technical innovations to sample an unbounded number of Dirichlet-mixture components. The resulting Dirichlet mixtures model multiple-alignment data substantially better than do previously derived ones. They consist of over 500 components, in contrast to fewer than 40 previously, and provide a novel perspective on the structure of proteins. Individual protein positions should be seen not as falling into one of several categories, but rather as arrayed near probability ridges winding through amino acid multinomial space.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] The Dirichlet space: a survey
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric T.
    Wick, Brett D.
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17A : 45 - 86
  • [32] The classical Dirichlet space
    Ross, WT
    Recent Advances in Operator-Related Function Theory, 2006, 393 : 171 - 197
  • [33] Small-Variance Asymptotics for Dirichlet Process Mixtures of SVMs
    Wang, Yining
    Zhu, Jun
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2135 - 2141
  • [34] MULTIPLIERS OF THE DIRICHLET SPACE
    STEGENGA, DA
    ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (01) : 113 - 139
  • [35] REFLECTED DIRICHLET SPACE
    SILVERSTEIN, ML
    ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (02) : 310 - 355
  • [36] Cyclicity in the Dirichlet space
    El-Fallah, Omar
    Kellay, Karim
    Ransford, Thomas
    ARKIV FOR MATEMATIK, 2006, 44 (01): : 61 - 86
  • [37] Nearest Neighbor Dirichlet Mixtures
    Chattopadhyay, Shounak
    Chakraborty, Antik
    Dunson, David B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [38] COMPUTATIONS OF MIXTURES OF DIRICHLET PROCESSES
    KUO, L
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01): : 60 - 71
  • [39] A DIRICHLET PROCESS MIXTURE OF DIRICHLET DISTRIBUTIONS FOR CLASSIFICATION AND PREDICTION
    Bouguila, Nizar
    Ziou, Djemel
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 297 - +
  • [40] Dependent mixtures of Dirichlet processes
    Hatjispyros, Spyridon J.
    Nicoleris, Theodoros
    Walker, Stephen G.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (06) : 2011 - 2025