Mechanism for Singlet Oxygen Production in Li-Ion and Metal-Air Batteries

被引:49
|
作者
Houchins, Gregory [3 ,4 ]
Pande, Vikram [2 ]
Viswanathan, Venkatasubramanian [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Wilton E Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Wilton E Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
NEXT-GENERATION BATTERIES; SUPEROXIDE ANION; MOLECULAR-OXYGEN; LITHIUM SUPEROXIDE; CATHODE MATERIALS; PERFORMANCE; STABILITY; DISMUTATION; CHALLENGES; CHEMISTRY;
D O I
10.1021/acsenergylett.0c00595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Singlet oxygen has emerged as a real mystery puzzling battery science, having been observed in Li-O-2 and Na-O-2 batteries, in conventional Li-ion batteries with NMC cathodes, and during the oxidation of Li2CO3. The formation of singlet oxygen has been directly linked to the degradation and catastrophic fade seen in these battery chemistries. While there are several proposed hypothesis for its origin, the exact mechanism for the formation of singlet oxygen remains unclear. In this Letter, we attempt to unify these findings by proposing a mechanism of singlet oxygen production in metal-air and Li-ion batteries. We show that a potential dependence of surface termination explains the onset potentials of singlet oxygen release, and in all considered cases the mechanism of singlet oxygen generation is through the chemical disproportionation of the uncoordinated superoxide anion in solution; therefore, the singlet oxygen yield is determined by the concentration of free superoxide versus alkali superoxide ion pairs in solution.
引用
收藏
页码:1893 / 1899
页数:7
相关论文
共 50 条
  • [31] Metal-Air Batteries-A Review
    Olabi, Abdul Ghani
    Sayed, Enas Taha
    Wilberforce, Tabbi
    Jamal, Aisha
    Alami, Abdul Hai
    Elsaid, Khaled
    Rahman, Shek Mohammod Atiqure
    Shah, Sheikh Khaleduzzaman
    Abdelkareem, Mohammad Ali
    ENERGIES, 2021, 14 (21)
  • [32] Metal-Air and Redox Flow Batteries
    Cho, Jaephil
    CHEMPLUSCHEM, 2015, 80 (02): : 257 - 258
  • [33] Composite electrodes for metal-air batteries
    Lee, Shu Han
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [34] Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries
    Su, Yu-Sheng
    Hsiao, Kuang-Che
    Sireesha, Pedaballi
    Huang, Jen-Yen
    BATTERIES-BASEL, 2022, 8 (01):
  • [35] Metal-air batteries: progress and perspective
    Chen, Yuhui
    Xu, Jijing
    He, Ping
    Qiao, Yu
    Guo, Shaohua
    Yang, Huijun
    Zhou, Haoshen
    SCIENCE BULLETIN, 2022, 67 (23) : 2449 - 2486
  • [36] METAL-AIR BATTERIES FOR ELECTRIC VEHICLES
    BUZZELLI, ES
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1979, (APR): : 69 - 69
  • [37] Divalent Nonaqueous Metal-Air Batteries
    Lu, Yi-Ting
    Neale, Alex R.
    Hu, Chi-Chang
    Hardwick, Laurence J.
    FRONTIERS IN ENERGY RESEARCH, 2021, 8
  • [38] Magnetoelectric Coupling for Metal-Air Batteries
    Wang, Hengwei
    Wang, Keliang
    Zuo, Yayu
    Wei, Manhui
    Pei, Pucheng
    Zhang, Pengfei
    Chen, Zhuo
    Shang, Nuo
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (05)
  • [39] Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air
    Lee, Jang-Soo
    Kim, Sun Tai
    Cao, Ruiguo
    Choi, Nam-Soon
    Liu, Meilin
    Lee, Kyu Tae
    Cho, Jaephil
    ADVANCED ENERGY MATERIALS, 2011, 1 (01) : 34 - 50
  • [40] BIFUNCTIONAL AIR-ELECTRODE FOR METAL-AIR BATTERIES
    CARLSSON, L
    OJEFORS, L
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (03) : C111 - C111