Mechanism for Singlet Oxygen Production in Li-Ion and Metal-Air Batteries

被引:49
|
作者
Houchins, Gregory [3 ,4 ]
Pande, Vikram [2 ]
Viswanathan, Venkatasubramanian [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Wilton E Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Wilton E Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
NEXT-GENERATION BATTERIES; SUPEROXIDE ANION; MOLECULAR-OXYGEN; LITHIUM SUPEROXIDE; CATHODE MATERIALS; PERFORMANCE; STABILITY; DISMUTATION; CHALLENGES; CHEMISTRY;
D O I
10.1021/acsenergylett.0c00595
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Singlet oxygen has emerged as a real mystery puzzling battery science, having been observed in Li-O-2 and Na-O-2 batteries, in conventional Li-ion batteries with NMC cathodes, and during the oxidation of Li2CO3. The formation of singlet oxygen has been directly linked to the degradation and catastrophic fade seen in these battery chemistries. While there are several proposed hypothesis for its origin, the exact mechanism for the formation of singlet oxygen remains unclear. In this Letter, we attempt to unify these findings by proposing a mechanism of singlet oxygen production in metal-air and Li-ion batteries. We show that a potential dependence of surface termination explains the onset potentials of singlet oxygen release, and in all considered cases the mechanism of singlet oxygen generation is through the chemical disproportionation of the uncoordinated superoxide anion in solution; therefore, the singlet oxygen yield is determined by the concentration of free superoxide versus alkali superoxide ion pairs in solution.
引用
收藏
页码:1893 / 1899
页数:7
相关论文
共 50 条
  • [21] BIFUNCTIONAL AIR ELECTRODE FOR METAL-AIR BATTERIES
    CARLSSON, L
    OJEFORS, L
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (03) : 525 - 528
  • [22] Composite air electrode for metal-air batteries
    Marschilok, Amy C.
    Takeuchi, Esther S.
    Takeuchi, Kenneth J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [23] Bifunctional Catalysts for Metal-Air Batteries
    Dai, Liming
    Zhi, Chunyi
    Feng, Xinliang
    BATTERIES & SUPERCAPS, 2019, 2 (04) : 270 - 271
  • [24] Invalidation Mechanism of Alloy Materials for Li-ion Batteries
    Wang Lian-Bang
    Yang Zhen-Zhen
    Kang Hu-Qiang
    Huang Li-Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2009, 30 (01): : 140 - 143
  • [25] Metal dicarboxylates as anode materials for Li-ion batteries
    Teusner, Matthew
    Mata, Jitendra
    Johannessen, Bernt
    Stewart, Glen
    Cadogan, Sean
    Sharma, Neeraj
    MATERIALS ADVANCES, 2023, 4 (15): : 3224 - 3238
  • [26] Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
    Cheng, Fangyi
    Chen, Jun
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2172 - 2192
  • [27] Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes
    Wang, Zhong-Li
    Xu, Dan
    Xu, Ji-Jing
    Zhang, Xin-Bo
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) : 7746 - 7786
  • [28] Metal-air batteries for powering robots
    Zhong, Daiyuan
    Wang, Keliang
    Zuo, Yayu
    Wei, Manhui
    Xiong, Jianyin
    Wang, Hengwei
    Zhang, Pengfei
    Shang, Nuo
    Chen, Zhuo
    Pei, Pucheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (46) : 25115 - 25135
  • [29] Composite electrodes for metal-air batteries
    Marschilok, Amy C.
    Lee, Shu Han
    Milleville, Christopher C.
    Yau, Shali Z.
    Takeuchi, Esther S.
    Takeuchi, Kenneth J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [30] Flexible metal-air batteries: An overview
    Peng, Xinwen
    Li, Tingzhen
    Zhong, Linxin
    Lu, Jun
    SMARTMAT, 2021, 2 (02): : 123 - 126