Solvent effect on aggregational properties of β-amyloid polypeptides studied by FT-IR spectroscopy

被引:14
|
作者
Szabó, Z
Jost, K
Soós, K
Zarándi, M
Kiss, JT
Penke, B
机构
[1] Attila Jozsef Univ, Dept Organ Chem, H-6720 Szeged, Hungary
[2] Albert Szent Gyorgyi Med Univ, Dept Med Chem, H-6720 Szeged, Hungary
关键词
Alzheimer's disease; beta-amyloids; aggregation; solvent effect; 2D FT-IR;
D O I
10.1016/S0022-2860(98)00820-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aggregation of the beta-amyloid peptides is the major hallmark of the brain in case of Alzheimer's disease. On the basis of some results it is assumed that the toxic centrum of the beta A4 (1-42) amyloid peptide is primarily the (31-35) fragment [N.W. Kowall, A.C. McKee, B.A. Yanker, M.P. Beal, Neurobiol. Aging 13 537-542; B. Penke, L. Toth, K. Soos, J. Varga, E.Z. Szabo, J. Marki-Zay, A. Baranyi, in: H.L.S. Maia (Ed.), Peptides 1994, Proceedings of the 23rd European Peptide Symposium Escom, Leiden, 1995, pp. 101-102; I. Laczko, Z. Konya, J. Varga, K. Soos, M. Hollosi, B. Penke, in: H.L.S. Maia (Ed.), Peptides 1994, Proceedings of the 23rd European Peptide Symposium Escom, Leiden, 1995, pp. 549-550]. Two analogues of beta A4 (1-42) were synthetized: one of them includes the toxic fragment (31-35) unchanged and consists mainly of hydrophilic residues, denoted as MOD-3. The other one does not contain the toxic fragment and has mainly hydrophobic residues, denoted as MOD-4. Peptides were dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol to have deaggregated samples. After the addition of the D2O as second solvent, the aggregation was followed by FT-IR spectroscopy. Changes of the spectra as a function of the composition of the solvent mixtures will be shown and discussed. Based on the results, FT-IR spectroscopy seems to be a suitable analytical control in standardizing the aggregation grade of beta-amyloid peptides. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:481 / 487
页数:7
相关论文
共 50 条
  • [31] A monolithic interferometer for FT-IR spectroscopy
    Bleier, Z
    Brouillette, C
    Carangelo, R
    SPECTROSCOPY, 1999, 14 (10) : 46 - 49
  • [32] REFLECTION SPECTROSCOPY WITH THE FT-IR MICROSCOPE
    WIHLBORG, WT
    REFFNER, JA
    STRAND, SW
    WASACZ, FM
    7TH INTERNATIONAL CONFERENCE ON FOURIER TRANSFORM SPECTROSCOPY, 1989, 1145 : 305 - 306
  • [33] FAST THERMOLYSIS FT-IR SPECTROSCOPY
    BRILL, TB
    ANALYTICAL CHEMISTRY, 1989, 61 (15) : A897 - &
  • [34] The use of FT-IR spectroscopy in microtechnologies
    Guber, AE
    MIKROCHIMICA ACTA, 1997, : 639 - 641
  • [35] FT-IR and FT Raman spectroscopy in medical microbiology
    Naumann, D
    SPECTROSCOPY OF BIOLOGICAL MOLECULES: MODERN TRENDS, 1997, : 433 - 434
  • [36] The imaging advantage to FT-IR spectroscopy
    Leary, Pauline E.
    Giordano, Jennifer L.
    Reffner, John A.
    SPECTROSCOPY, 2008, : 12 - +
  • [37] COMPUTERS AND COMPUTING IN FT-IR SPECTROSCOPY
    KUEHL, D
    DUCKWORTH, J
    7TH INTERNATIONAL CONFERENCE ON FOURIER TRANSFORM SPECTROSCOPY, 1989, 1145 : 48 - 56
  • [38] Polarization modulation FT-IR spectroscopy
    Buffeteau, T
    Desbat, B
    ACTUALITE CHIMIQUE, 2003, (01): : 18 - 25
  • [39] PRINCIPLES AND USE OF FT-IR SPECTROSCOPY
    LINDSTROM, M
    TROLLSAS, P
    SVENSK PAPPERSTIDNING-NORDISK CELLULOSA, 1990, 93 (06): : 66 - &
  • [40] Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR micro spectroscopy
    Lin, Shan-Yang
    Wang, Shun-Li
    Wei, Yen-Shan
    Li, Mei-Jane
    SURFACE SCIENCE, 2007, 601 (03) : 781 - 785